

Note

This documentation is being updated with material from the
Fuego wiki (at fuegotest.org). Please be patient while this work is
in progress.

Fuego Test System

Welcome to Fuego!

Fuego is a test system specifically designed for embedded Linux testing.
It supports automated testing of embedded targets from a host system,
as its primary method of test execution.

Fuego consists of a host/target script engine, and over 100 pre-packages
tests. These are installed in a docker container along with a Jenkins
web interface and job control system, ready for out-of-the-box
Continuous Integration testing of your embedded Linux project., and over
100 pre-packaged

The idea is that in the simplest case, you just add your board, select
or install a toolchain, and go!

Introduction presentation

Tim Bird gave some talks introducing Fuego, at various conferences
in 2016. The slides and a video are provided below, if you want
to see an overview and introduction to Fuego.

The slides are here:
Introduction-to-Fuego-LCJ-2016.pdf [http://fuegotest.org/ffiles/Introduction-to-Fuego-LCJ-2016.pdf],
along with a
YouTube video [https://youtu.be/AueBSRN4wLk].
You can find more presentations about Fuego on our wiki at:
http://fuegotest.org/wiki/Presentations.

Getting Started

	There are a few different ways to get started with Fuego:
	
	Use the Fuego Quickstart Guide to
get Fuego up an running quickly.

	Or go through our Install and First Test
tutorial to install Fuego and run a test on a single “fake” board.
This will give you an idea of basic Fuego operations, without
having to configure Fuego for your own board

	Work through the documentation for Installation

Where to download

	Code for the test framework is available in 2 git repositories:
	
	https://bitbucket.org/fuegotest/fuego/

	https://bitbucket.org/fuegotest/fuego-core/

The fuego-core directory resides inside the fuego directory.
But normally you do not clone that repository directly. It is cloned
for you during the Fuego install process. See the
Fuego Quickstart Guide or the
Installing Fuego page for more information.

Documentation

See the index below for links to the major sections of the documentation
for Fuego. The major sections are:

	Tutorials

	Installation and Administration

	User Guides

	Developer Resources

	API Reference

Resources

Mailing list

Fuego discussions are held on the fuego mailing list:

	https://lists.linuxfoundation.org/mailman/listinfo/fuego

Note that this is a new list (as of September 2016). Previously,
discussions about Fuego (and its predecessor JTA) were held on the
ltsi-dev mailing list:

	https://lists.linuxfoundation.org/mailman/listinfo/ltsi-dev

Presentations

A number of presentations have been given on the Fuego test framework,
and related projects (such as its predecessor JTA, and a derivative
project JTA-AGL).

See the Presentations [http://fuegotest.org/wiki/Presentations]
page on the Fuego wiki for a list of presentations that you can read
or view for more information about Fuego.

Vision

The purpose of Fuego is to bring the benefits of open source to the
testing process.

It can be summed up like this:

Note

Do for testing
what open source has done for coding

There are numerous aspects of testing that are still done in an ad-hoc
and company-specific way. Although there are open source test
frameworks (such as Jenkins or LAVA), and open source test programs
(such as cylictest, LTP, linuxbench, etc.), there are lots of aspects
of Linux testing that are not shared.

The purpose of Fuego is to provide a test framework for testing
embedded Linux, that is distributed and allows individuals and
organizations to easily run their own tests, and at the same time
allows people to share their tests and test results with each other.

Historically, test frameworks for embedded Linux have been difficult to
set up, and difficult to extend. Many Linux test systems are not easily
applied in cross or embedded environments. Some very full frameworks are
either not viewed as processor-neutral, and are difficult to set up, or
are targeted at running tests on a dedicated group of boards or devices.

The vision of open source in general is one of sharing source code and
capabilities, to expand the benefits to all participants in the
ecosystem. The best way to achieve this is to have mechanisms to
easily use the system, and easily share enhancements to the system, so
that all participants can use and build on each others efforts.

The goal of Fuego is to provide a framework that any group can install
and use themselves, while supporting important features like
cross-compilation, host/target test execution, and easy test
administration. Test administration consists of starting tests (both
manually and automatically), viewing test results, and detecting
regressions. Ease of use is critical, to allow testers to use tests
that are otherwise difficult to individually set up, configure, and
interpret the results from. It is also important to make it very easy
to share tests (scripts, configuration, results parsing, and
regression detection methods).

Some secondary goals of this project are the ability for 3rd parties
to initiate or schedule tests on our hardware, and the ability to
share our test results with others.

The use of Jenkins as the core of the test framework already supports
many of the primary and secondary goals. The purpose of this project
is to augment the Jenkins system to support embedded configurations of
Linux, and to provide a place for centralized sharing of test
configurations and collateral.

There is no such thing as a “Linux Test distribution”. Fuego aims to
be this. It intends to provide test programs, a system to build,
deploy and run them, and tools to analyze, track, and visualize test
results.

For more details about a high-level vision of open source testing,
please see OSS Test Vision.

Other Resources

Historical information

http://elinux.org/Fuego has some historical information about
Fuego.

Related systems

See Other test systems for notes about other test
frameworks and comparisons between Fuego and those other systems.

Things to do

Looking for something to do on Fuego? See the Fuego wiki
for a list of projects, at:
Fuego To Do List [http://fuegotest.org/wiki/Fuego_To_Do_List]

Index

Contents:

	About Fuego

	Architecture
	Major elements

	Jenkins

	Pre-packaged tests

	Abstraction scripts

	Container

	Hardware configuration

	Different objects in Fuego

	Jenkins operations

	Fuego operations

	Test execution

	Test variable file generation

	Fuego test phases

	Data Files

	Roles

Tutorials:

	Install and First Test
	Overview

	Step details

	Run a test

	Conclusions

	What do do next?

Installation and Administration:

	Fuego Quickstart Guide
	Overview

	Install pre-requisite software

	Download, build, start and access

	Add your board to fuego

	Install a toolchain

	Now select some tests

	Run a test

	Additional Notes

	Troubleshooting

	Installing Fuego
	Overview

	Install pre-requisite software

	Overview of remaining steps

	Install the Fuego repositories

	Create the Fuego container

	Start the Fuego container

	Access the Fuego Jenkins web interface

	Access the Fuego docker command line

	Remaining steps

	Alternative installation configurations

	Adding a Board
	Overview

	Board-specific test variables

	Adding a toolchain
	Introduction

	Obtain a toolchain

	Install the SDK in the docker container

	Create a -tools.sh file for the toolchain

	Reference the toolchain in a board file

	Notes

	Adding test jobs to Jenkins
	Selecting tests or plans

	Adding individual tests

	Adding jobs based on testplans

	Adding views to Jenkins
	Adding a board view

	Add view by test name regular expression

	Add specific jobs

	Test variables
	Introduction

	Board file

	Overlay system

	Stored variables

	Spec variables

	Dynamic variables

	Variable precedence

User Guides:

	Jenkins User interface
	Main dashboard

	Node pages

	Job pages

	Build pages

	View pages

	Other Jenkins pages

Advanced Topics:

	Adding or Customizing a Distribution
	Introduction

	Distribution overlay file

	Referencing the distribution in the board file

	Testing Fuego/distribution interactions

	Notes

	Integration with ttc
	Outline of supported functionality

	Supported operations

	Location of ttc.conf

	Steps to use ttc with a target board

	modify your copy_to_cmd

	Working with remote boards
	using a jump server

	Using ttc transport remotely

	Setting up ssh ProxyCommand in the Fuego docker container

Developer resources

	Building Documentation
	building the outdated PDF

	building the RST docs

	Fuego Developer Notes
	Resources

	Notes

	Logs

	Core scripts

	License And Contribution Policy
	License

	Submitting contributions

API Reference

	Core interfaces
	From Jenkins to Fuego

	From Fuego to Fuego

	Example Values

	From Fuego to Jenkins

	Adding a new test
	Overview of Steps

	Decide on a test name

	Create the directory for the test

	Get the source for a test

	Test script

	Test spec and plan

	Test results parser

	Pass criteria and reference info

	Jenkins job definition file

	Publishing the test

	Technical Details

	Using Batch Tests
	How to make a batch test

	Test output

	Preparing the system for a batch job

	Executing a batch test

	Viewing batch test results

	Miscelaneous notes

	Parser module API
	Parser API

	Deprecated API

	Developer notes

Reference Material:

	FAQ
	Languages and formats used

	Fuego naming rules
	Fuego test name

	Test files

	Test spec names

	Board names

	Jenkins element names

	Run identifier

	timestamp

	test identifiers

	Test variable names

	Artwork
	Logos

	Banners

	images

	Photos

	Diagrams

	Presentation templates

	Glossary
	B

	C

	D

	F

	J

	L

	M

	O

	P

	R

	S

	T

	V

Indices and tables

	Index

	Module Index

	Search Page

About Fuego

Fuego is a test system specifically designed for embedded Linux
testing. It supports automated testing of embedded targets from
a host system, as it’s primary method of test execution.

The quick introduction to Fuego is that it consists of a host/target
script engine and over 100 pre-packaged tests. These are installed
in a docker container along with a Jenkins web interface and
job control system, ready for out-of-the-box Continuous Integration
testing of your embedded Linux project.

The ideas is that in the simplest case, you just add your board,
a toolchain, and go!

Architecture

Fuego consists of a continuous integration system, along
with some pre-packaged test programs and a shell-based
test harness, running in a Docker container.:

Fuego = (Jenkins + core scripts + pre-packaged tests)
 inside a container

Here’s a diagram with an overview of Fuego elements:

[image: _images/Fuego-architecture.png]

Major elements

The major elements in the Fuego architecture are:

	Host system

	Container build system

	Fuego container instance

	Jenkins continuous integration system

	Web-based user interface (web server on port 8090)

	Plugins

	Test programs

	Build environment (not shown in the diagram above)

	Fuego core system

	Target system

	Web client, for interaction with the system

Jenkins

The main interface for Fuego is provided by the Jenkins continuous
integration system.

The basic function of Jenkins is to automatically launch test jobs,
usually in response to changes in the software. However, it can
launch test jobs based on a variety of triggers, including when a user
manually schedules a test to run.

Jenkins is too big a system to describe in detail here, but it has
many features and is very popular. It has an ecosystem of plugins for
all kinds of extended functionality, such as integration with
different source code management systems, results plotting, e-mail
notifications of regressions, and more.

Fuego installs several plugins that are used by various aspects of the
system.

Jenkins is used to:

	Start tests

	Schedule tests for automatic execution

	Shows test results (particularly over time)

	Flag regressions in test results

Note that the interface between Jenkins and the test programs is
provided by a set of scripts (one per test, along with a set of
scripts that comprise the core of the system) written in shell script
language.

The interface between Jenkins and these core scripts is documented at
Core interfaces.

This overall architecture means that when items are added into the
system (for example boards, toolchains, or tests), information has to
be supplied to both systems (the Jenkins system and the core script
system).

Pre-packaged tests

Fuego contains over 100 pre-packaged tests, ready for you to start
testing “out-of-the-box”. There are tests of individual programs or
features, such as ‘iputils’ or ‘pmqtest’, as well as several benchmarks
in the areas of CPU performance, networking, graphics, and realtime.
Fuego also includes some full test suites, like LTP (Linux Test Project).
Finally, Fuego includes a set of selftests, to validate board
operation or core Fuego functionality.

Abstraction scripts

Fuego uses a set of shell script fragments to support abstractions for

	Building test programs from source,

	Deploying them to target (installing them)

	Executing the tests

	Copying files to and from the target

	Reading the test log

	Parsing the log to determine pass or fail conditions for tests

	Parsing the log for results to display in charts

Container

By default, Fuego runs inside a Docker container. This provides two
benefits:

	It makes it easy to run the system on a variety of different Linux
distributions

	It makes the build environment for the test programs consistent

Hardware configuration

Fuego supports testing of embedded Linux by fully supporting a
host/target configuration for building, deploying and executing tests.

Many Linux test systems assume that the system-under-test is a full
desktop or server system, with sufficient horsepower to build tests
and run them locally. Fuego assumes the opposite - that embedded
targets will be underpowered and may not have the normal complement of
utilities and tools available for performing tests

Different objects in Fuego

It is useful to give an overview of the major objects used in Fuego,
as they will be referenced many times:

Fuego core objects:

	board - a description of the device under test

	test - materials forconducting a test

	spec - one or more sets of variables for describing a test variant

	plan - a collection of tests, with additional test settings for
their execution

	run - the results from
a individual execution of a test on a board

Jenkins objects:

	node - the Jenkins object corresponding to a Fuego board

	job - a Jenkins object corresponding to a combination of board,
spec, and test

	build - the test results, from Jenkins perspective - corresponding
to a Fuego ‘run’

There are both a front-end and a back-end to the system, and different
names are used to describe the front-end and back-end objects used by
the system, to avoid confusion. In general, Jenkins objects have
rough counterparts in
the Fuego system:

	Jenkins object

	corresponds to fuego object

	node

	board

	job

	test

	build

	run

Jenkins operations

This section explains how Jenkins works as part of Fuego.

	When the a job is initiated, Jenkins starts a slave process to run
the test that corresponds to that job

	Jenkins records stdout from slave process

	The slave (slave.jar) runs a script specified in the config.xml for
the job

	This script sources functions from the scripts and overlays
directory of Fuego, and does the actual building, deploying and
test executing

	Also, the script does results analysis on the test logs, and
calls the post_test operation to collect additional information
and clean up after the test

	While a test is running, Jenkins accumulates the log output from
the generated test script and displays it to the user (if they are
watching the console log)

	Jenkins provides a web UI for browsing the nodes, jobs, and test
results (builds), and displaying graphs for benchmark data

Fuego operations

This section explains how the Fuego core system works to execute
tests and analyze results.

Test execution

	Each test has a base script, that defines a few functions specific
to that test (see below)

	Upon execution, this base script loads additional test variables
and function definitions from other files using something called
the overlay generator

	The overlay generator creates a script containing test variables
for this test run

	The script is created in the log directory for the test

	The script is called prolog.sh

	The overlay generator is called ovgen.py

	The base script (with the test variable script sourced into it)
runs on the host, and uses Fuego functions to perform different
phases of the test

	For a flow graph of normal test execution see:
test execution flow outline

Test variable file generation

	The generator takes the following as input:

	environment variables passed by Jenkins

	board file for the target (specified with NODE_NAME)

	tools.sh (vars from tools.sh are selected with TOOLCHAIN, from
the board file)

	the distribution file, and (selected with DISTRIB)

	test specs for the test

The generator creates a file containing test variables,
called prolog.sh and it is placed in
the the log directory for the test (also referred to as
the “run” directory). This generation happens on the
host, inside the docker container. Besides variable definitions,
the test variable file has functions which are called by the
test during test execution.

[image: _images/fuego-script-generation.png]

Input

	input descriptions:

	the board file has variables defining attributes of the board,
like the toolchain, network address, method of accessing the
board, etc.

	tools.sh has variables which are used for identifying the
toolchain used to build binary test programs

	it uses the TOOLCHAIN variable to determine the set of
variables to define

	a testplan lists multiple tests to run

	it specifies a test name and spec for each one

	a spec files hold the a set of variable declarations which are
used by the tests themselves.
These are put into environment variables on the target.

	ovgen.py reads the plans, board files, distrib files and specs,
and produces
a single prolog.sh file that has all the information for the test

	Each test in the system has a Fuego shell script, called
fuego_test.sh

	Most (but not all) tests have an additional test program

	this program is executed on the board (the device under test)

	it is often a compiled program, or set of programs

	it can be a simple shell script

	it is optional - sometime the base script can execute the needed
commands for a test without an additional program placed on the
board

	the base script declares the tarfile for the test, and has
functions for: test_build(), test_deploy() and test_run()

	the test script is run on host (in the container)

	but it can include commands that will run on the board

	tarball has the tarfile

	test_build() has commands (which run in the container) to compile
the test program

	test_deploy() has commands to put the test programs on the target

	test_run() has commands to define variables, execute the actual
test, and log the results.

	the test program is run on the target

	this is the actual test program that runs and produces a result

Fuego test phases

A test execution in fuego runs through several phases, some of which
are optional, depending on the test.

The test phases are:

	pre_test

	build

	deploy

	run

	fetch

	processing

	post_test

Each of these are described below the diagram.

[image: _images/fuego-test-phases.png]

pre_test

The pre_test phase consists of making sure the target is alive, and
preparing the workspace for the test. In this phase test directories
are created, and the firmware (a string describing the software on the
target) are collected.

The ‘before’ syslog is created, and filesystems are synced and buffer
caches dropped, in preparation for any filesystem tests.

If the function “test_pre_check” is defined in the base script, it is
called to do any pre_test operations, including checking to see if
required variables are set, programs or features are available on the
host or target board, or whether any other test dependencies are met.

build

During this phase, the test program source is installed on the host
(inside the container), and the software for the test is actually
built. The toolchain specified by PLATFORM is used to build the
software.

This phase is split into multiple parts:

	pre_build - build workspace is created, a build lock is acquired
and the tarball is unpacked

	unpack is called during pre_build

	test_build - the test_build function from fuego_test.sh is called

	usually this consists of ‘make’, or ‘configure ; make’

	post_build - (empty for now)

deploy

The purpose of this phase is to copy the test programs, and any
required supporting files, to the target.

This consists of 3 sub-phases:

	pre_deploy - cd’s to the build directory

	test_deploy - the base script’s ‘test_deploy’ function is called.

	Usually this consists of tarring up needed files, copying them to
the target with ‘put’, and then extracting them there

	Items should be placed in the directory
$BOARD_TESTDIR/fuego.$TESTDIR/ directory on the target

	post_deploy - removes the build lock

run

In this phase the test program on the target is actually executed.

This executes the ‘test_run’ function defined in the base script for
the test, which can consist of anything. Usually, however, it runs
the test program with any needed parameters (as specified by the test
specs and test plans).

The test execution is usually performed by calling the ‘report’
function, which collects the standard out from the command execution
on the target, and saves that as the testlog for the test. Note that
the testlog is saved on the target, but not yet transferred to the
host, yet.

post_test

In this phase, the test log is retrieved (fetched) from the target and
stored on the host. Also in this phase, the board is “cleaned up”,
which means that test directories and logs are removed on the target
board, and any leftover processes related to this test that are
running on the board are stopped.

processing

In the processing phase of the test, the results from the test log are
evaluated. The test_processing function of the base test script is
called.

For functional tests:

Usually, this phase consists of one or more calls to ‘log_compare’, to
determine if a particular string occurs in the testlog. This phase
determines whether the test passed or failed, and the base test script
indicates this (via it’s exit code) to the Jenkins interface.

For benchmarking tests:

This phase consists of parsing the testlog, using parser.py, and also
running dataload.py to save data for plot generation.

Also, a final analysis is done on the system logs is done in this step
(to detect things like Kernel Oopses that occurred during the test).

phase relation to base script functions

Some of the phases are automatically performed by Fuego, and some end
up calling a routine in the base script (or use data from the base
script) to perform their actions. This table shows the relation
between the phases and the data and routines that should be defined
in the base script.

It also shows the most common commands utilized by base script
functions for this phase.

	phase

	relationship to base script

	common operations

	pre_test

	calls ‘test_pre_check’

	assert_define, is_on_target,
check_process_is_running

	build

	uses the ‘tarfile’ definition,
calls’test_build’

	patch, configure, make

	deploy

	Calls ‘test_deploy’

	put

	run

	calls ‘test_run’

	cmd, report, report_append

	get_testlog

	(none)

	

	processing

	calls ‘test_processing’

	log_compare

	post_test

	calls ‘test_cleanup’

	kill_procs

Other scripts and programs

	parser.py - for parsing test results

	criteria.json - for analyzing test results

A test might also include a file called parser.py. In fact, every
benchmark test should have one. This file is a python module which is
run to extract results and data values from the log.

This script is run inside the docker container, after a test is
finished. The Fuego log parsing system (in python) loads this module as
part of test processing.

A benchmark program measures some attribute of the system during a test,
and produces one or more values called ‘metrics’. These values are
emitted by the benchmark test into the test log, and the Fuego parser
retrieves these values and uses them to evaluate the pass/fail status of
the benchmark. These values are saved as part of the test results, and
are used by plotting software to show charts of test results in the
Jenkins interface.

Tests may also include a file called criteria.json which is used to
determine whether test results constitute a pass or fail result. For
example, for benchmark tests, the system can collect a number from the
test program, but it is up to the system to determine whether that
number represents an acceptable value (pass), or a failure or regression
(fail). The criteria.json file has data about metric thresholds,
for benchmark tests, and about test results that can be ignored, for
functional tests, to allow for automating this results processing.

Data Files

There are data files with definitions for several things in the system.

The Jenkins interface needs to know about boards, running test
processes (slaves), test definitions, and test results.

The fuego core needs to know about test definitions, boards, platforms
(SDKS), test plans, and test specs.

The core executes the test script for a test, executing the test
phases in sequence: build the test program, bundle the test programs
for the target, deploy them, execute the test, then post-process the
the test.

The base shell script should:

	build the test program

	deploy the test bundle to the target

	execute the tests

	read the log data from the test

The base shell script can handle host/target tests (because it runs on
the host). That is, tests that involve actions on both the host and
target.

To add a new test, the user defines several files and puts them into
/fuego-core/engine/tests

The ftc command uses this directory and the directory
/fuego-ro/boards to show available boards and tests on the command
line. Then a user can populate the nodes and jobs in Jenkins, using
ftc commands. Each test has to have a front-end entry (a Jenkins job
definition) to allow Jenkins to execute it. This front-end entry
specifies the board, spec and base script for the test.

Roles

Human roles:

	test program author - person who creates a new standalone test
program

	test integrator - person who integrates a standalone test into
fuego

	fuego developer - person who modifies Fuego (including the Fuego
system scripts or Jenkins) to support more test scenarios or
additional features

	tester - person who executes tests and evaluates results

Install and First Test

This tutorial has some short setup instructions if you just want to
get a taste of what Fuego is like. This allows you to experiment
with Fuego and try out some tests to see what it looks like and
how it works, without investing a lot of time (well, except for
the first container build).

In this configuration, we will show you how to install Fuego
and run a test on a ‘docker’ board, which is the docker container
where Fuego itself is running, on your host machine.

Obviously, this is not useful for testing any real hardware. It is intended
only as a demonstration of Fuego functionality.

For instructions to set up a real board, try the
Fuego Quickstart Guide
or the Installing Fuego page.

Overview

An overview of the steps is:

	Install pre-requisite software

	Download the Fuego repository

	Build your Fuego container

	Start the container

	Add the ‘docker’ board to Jenkins

	Add some sample tests

	Access the Jenkins interface

	Run a test

These steps are described below.

Step details

To install and run Fuego, you need to have git and docker installed on
your system.

On Ubuntu, try the following commands:

$ sudo apt install git docker.io

To download Fuego, and build and start the container,
type the following commands at a Linux shell prompt:

$ git clone https://bitbucket.org/fuegotest/fuego.git
$ cd fuego
$./install.sh
$./start.sh

The third step (with :command:./install.sh) will take some time - about 45 minutes
on an average Linux machine. You might want to go make yourself a sandwich,
(or go watch the Fuego introduction video [https://youtu.be/AueBSRN4wLk]).
This step is building the “Fuego” distribution
of Linux (based on Debian) and putting it into the Fuego docker container.
You will also need a connection to the Internet with fairly decent
bandwidth.

When you run the ‘start.sh’ script, the terminal will be placed at a shell
prompt, as the root user inside the docker container. The container will
run until you exit this shell. You should leave it running for the
duration of your testing.

The next steps populate the Jenkins system objects used for testing:

At the shell prompt inside the container type the following:

ftc add-node -b docker
ftc add-jobs -b docker -t Functional.batch_smoketest

This will add the ‘docker’ node in the Jenkins interface, and a small
set of tests. The ‘docker’ node simulates an embedded “board” using the
Fuego docker container itself. The “smoketest” batch test has about 20
tests that exercise a variety of features in a Linux system. After
running these commands, a set of jobs will appear in the Jenkins
interface.

$ firefox http://localhost:8090/fuego

To access the Fuego interface (Jenkins) you can use any browser -
not just Firefox.
By default the Fuego interface runs on your host machine, on
port 8090, with URL path “/fuego”.

In your browser, you should see a screen similar to the following:

[image: _images/fuego-1.1-jenkins-dashboard-beaglebone-jobs.png]

Run a test

Manually start a test

	To run a job manually, do the following:
	
	Go to the Jenkins dashboard (in the main Jenkins web page),

	Select the job (which includes the board name and the test name)

	Click “Build job” (Jenkins refers to running a test as “building” it.)

	A few very simple jobs you might start with are:
	
	Functional.hello_world

	Benchmark.Drhystone

You can also start a test manually by clicking on the circle with
a green triangle, on the far right of the line with the job name,
in the Jenkins dashboard.

When you run a test, the test software is built from source,
sent to the machine (in this case the Fuego docker container), and
executed. Then the results are collected, analyzed, and displayed
in the Jenkins interface.

Look at the results

When the test has completed, the status will be shown by a colored
ball by the side of the test in the dashboard. Green means success,
red means failure, and grey means the test did not complete (it was
not run or it was aborted).

You can get details about the test by clicking on the links in the
history list. You can see the test log (the output from the test
program), by clicking on the “testlog” link. You can see the steps
Fuego took to execute the test by clicking on the “console log” link on
the job page. And you can see the formatted results for a job, and job
details (like start time, test information, board information, and
results) in the test’s ‘run.json’ file.

Conclusions

Hooray! You have completed your first Fuego test. Although this
was not a test on real hardware, you (and Fuego) have completed
a lot of stuff behind the scenes. You have:

	Downloaded your own distribution of Fuego and installed it in a docker
container

	Added a fake “board” to Jenkins

	Added tests to run on the board

	Executed a test

During this last step, Fuego did the following:

	Built the test program from source code

	Downloaded the test to the “board”

	Executed the test

	Retrieved the test log from the board

	Analyzed the log, and formatted results for display in Jenkins

Whew! That’s a lot of work. And all you had to do (after initial
installation) was click a button.

What do do next?

In order to use Fuego in a real Continous Integration loop, you need to
do a few things:

	Configure Fuego to work with your own board or product

	Select the set of tests you would like to run on your board

	Customize benchmark thresholds and functional baselines for those tests,
for your board

	Configure Fuego jobs to be triggered after new software is installed
on the board

Fuego does not currently have support for installing new system software
(the kernel and root filesystem) on boards itself. This is something you
need to automate outside of Fuego, if you plan to use Fuego in your
CI loop for system software.

Usually, Fuego users create their own Jenkins job which provisions the board
(installs the kernel and/or root filesystem for their chosen Linux
distribution), and then triggers Fuego jobs, after the new software is
installed on the board.

See further instructions see the Fuego Quickstart Guide,
Adding a Board, Adding a toolchain
or the Installing Fuego page.

Fuego Quickstart Guide

Running tests from Fuego on your hardware can be accomplished in a few
simple steps.

Note

This is the Quickstart Guide. More detailed instructions
can be found at Installing Fuego.

Overview

The overview of the steps is:

	install pre-requisite software

	download the fuego repository

	build your fuego container

	start the container

	access the interface

	add your board to fuego

	run a test

These steps are described below.

Install pre-requisite software

To retrieve the fuego software and create the docker image for it, you need
to have git and docker installed on your system.

On Ubuntu, try the following commands::

$ sudo apt install git docker.io

Download, build, start and access

To accomplish the last 6 steps, do the following from a Linux command prompt::

$ git clone https://bitbucket.org/fuegotest/fuego.git
$ cd fuego
$./install.sh
$./start.sh
$ firefox http://localhost:8090/fuego

The fourth step (with ./install.sh) will take some time - about 45 minutes
on my machine. This is the main step that builds the Fuego docker
container.

When you run the ‘start.sh’ script, the terminal
where this is run will be placed at a shell prompt, as the root user,
inside the docker container. The container will run until you exit this
shell. You should leave it running for the duration of your testing.

Note

If you are experimenting with the unreleased version of Fuego
in the’next’ branch, then please replace the ‘git clone’ command in
the instructions above with this (i.e. add ‘-b next’):

$ git clone -b next https://bitbucket.org/fuegotest/fuego.git

On the last step, to access the Fuego interface you can use any
browser - not just Firefox. By default the Fuego interface runs
on your host machine, on port 8090, with URL path “/fuego”.

In your browser, you should see a screen similar to the following:

[image: _images/fuego-1.1-jenkins-dashboard-new.png]

We will now add items to Fuego (and this screen) so you can begin testing.

Add your board to fuego

	To add your own board to Fuego, there are three main steps:
	
	
	create a test directory on the target

	
	create a board file (on the host)

	
	add your board to the Jenkins interface

You can find detailed instructions for adding a board at:
Adding a Board

However, here is a quick list of steps you can do to add
a your own board, and a sample ‘docker’ board to Fuego:

Create a test directory on your board

Login to your board, and create a directory to use for testing::

$ ssh root@your_board
<board>$ mkdir /home/a
<board>$ exit

If not using ssh, use whatever method you normally use to
access the board.

Create board file

Now, create your board file.
The board file resides in <fuego-dir>/fuego-ro/boards, and has a filename
with the name of the board, with the extension “.board”.

Do the following:

$ cd fuego-ro/boards
$ cp template-dev.board myboard.board
$ vi myboard.board

Edit the variables in the board file to match your board.
Most variables can be left alone, but you will need
to change the IPADDR, TOOLCHAIN and ARCHITECTURE variables,
and set the BOARD_TESTDIR to the directory
you just created above.

For other variables in the board file, or specifically to use
a different transport than SSH, see more complete instructions
at: Adding a Board

Add boards to the Jenkins interface

Finally, add the board in the Jenkins interface.

In the Jenkins interface, boards are referred to as “Nodes”.

	At the container shell prompt, run the following command:
	
	(container prompt)$ ftc add-nodes -b myboard docker

This will add your board as a node, as well as a ‘docker’ node in the Jenkins interface.

Install a toolchain

If you just wish to run experiment with Fuego, without installing your
own board, you can use the existing ‘docker’ board. This will run the
tests inside the docker container on your host machine. This requires little
setup, and is intended to let people try Fuego to see how the interface and
tests work, without having to set up their own board.

If you are running an ARM board with a Debian-based distribution on it,
you can install the Debian ARM cross-compilers into the docker container
with the following command (inside the container):

	(container prompt)$ /fuego-ro/toolchains/install_armhf_toolchain.sh

If you are installing a some other kind of board (different architecture,
different root filesystem layout, or different shared library set), you
will need to install a toolchain for your board inside the docker container.

Please follow the instructions at:
Adding a toolchain to do this.

Now select some tests

In order to execute tests using the Jenkins interface, you need to create
Jenkins “jobs” for them. You can do this using the ‘ftc add-jobs’ command.

These commands are also executed at the shell prompt in the docker container.

You can add jobs individually, or you can add a set of jobs all at once
based on something called a ‘testplan’. A testplan is a list of Fuego tests
with some options for each one. You can see the list of testplans in your
system with the following command:

	(container prompt)$ ftc list-plans

	To create a set of jobs for the ‘docker’ board on the system, do the following:
	
	(container prompt)$ ftc add-jobs -b docker -p testplan_docker

	To create a set of jobs for your own board (assuming you called it ‘myboard’), do the following:
	
	(container prompt)$ ftc add-jobs -b myboard -p testplan_smoketest

The “smoketest” testplan has about 20 tests that exercise a variety of
features in a Linux system. After running these commands, a set of jobs will
appear in the Jenkins interface.

Once this is done, your Jenkins interface should look something like this:

[image: _images/fuego-1.1-jenkins-dashboard-beaglebone-jobs.png]

Run a test

	To run a job manually, you can do the following:
	
	Go to the Jenkins dashboard (in the main Jenkins web page),

	Select the job (which includes the board name and the test name)

	Click “Build job” (Jenkins refers to running a test as “building” it.)

You can also click on the circle with a green triangle, on the far right
of the line with the job name, in the Jenkins dashboard.

When the test has completed, the status will be shown by a colored ball by the side of the test in the dashboard. Blue means success, red means failure, and grey means the test did not complete (was not run or was aborted). You can get details about the test run by clicking on the link in the history list.

Additional Notes

Other variables in the board file

Depending on the test you want to run, you may need to define some other
variables that are specific to your board or the configuration of the
filesystem on it. Please see Adding a Board for
detailed instructions and a full list of variables that may be used on
the target.

the Jenkins interface

See Jenkins User Interface for more screenshots
of the Jenkins web interface. This will help familiarize you with some
of the features of Jenkins, if you are new to using this tool.

Troubleshooting

If you have problems installing or using Fuego, please see our
Troubleshooting Guide

Installing Fuego

This page describes the steps to install Fuego on your Linux machine.
It includes detailed descriptions of the operations, for both users
and developers.

Tip

If you are interested in a quick outline of steps, please see
the Fuego Quickstart Guide instead.

Overview

The overview of the steps is:

	Install pre-requisite software

	Download the Fuego repository

	Build your Fuego container

	Start the container

	Access the Jenkins interface

Install pre-requisite software

To retrieve the Fuego software and create the Docker image for it, you
need to have git and Docker installed on your system.

On Ubuntu, try the following commands:

$ sudo apt-get install git
$ sudo apt-get install docker.io

These commands may be different for other distributions of Linux
(such as Fedora, RedHat, CentOS, Mint, etc.)

Overview of remaining steps

Steps 2 through 5 of the installation can be performed with the
following Linux commands:

$ git clone https://bitbucket.org/fuegotest/fuego.git
$ cd fuego
$./install.sh
$./start.sh
$ firefox http://localhost:8090/fuego

These steps and commands will be described in the sections that follow.

Install the Fuego repositories

The Fuego system is contained in 2 git repositories. One repository is
called fuego and the other is called fuego-core. The
fuego-core repository is installed inside the fuego directory, at
the top level of that repository’s directory structure. This is done
automatically during the install of Fuego. You do not need to clone the
fuego-core repository manually yourself.

The reason to have two repositories is that they
hold different pieces of the Fuego system, and this allows
for them to be upgraded independently of each other.

The repositories are hosted on bitbucket.org, under
the the fuegotest account.

Fuego repository

The fuego repository has the code and files used to build the
Fuego docker container. It also has the fuego-ro directory, which
has board definition files, various configuration files,
miscellaneous scripts, and other items which are used by Fuego
for container management or other purposes.

Fuego-core repository

The fuego-core repository has the code which implements the
core of the Fuego test execution engine, as well as the pre-packaged
tests included with the system. This includes the overlay generator,
the results parser, the Fuego shell function library, the directory
of tests, and the main Fuego command line tool ftc.

Downloading the repository

You can use git clone to download the main Fuego repository, like
so:

$ git clone https://bitbucket.org/fuegotest/fuego.git
$ cd fuego

After downloading the repositories, switch to the fuego directory,
as shown in the example.

Note that these git commands will download the ‘master’ branch of the
repository, which is the current main released version of Fuego.

Downloading a different branch

If you are experimenting with an unreleased version of Fuego
in the ‘next’ branch, then please replace the ‘git clone’ command in
the instructions above with these:

$ git clone -b next https://bitbucket.org/fuegotest/fuego.git
$ cd fuego

This uses -b next to indicate a different branch to check out during
the clone operation.

Create the Fuego container

The third step of the installation is to run install.sh to create the
Fuego docker container. While in the fuego directory,
run the script from the current directory, like so:

$./install.sh

install.sh uses Docker and the Dockerfile in the fuego directory
to create a Docker container with the Fuego Linux distribution.

This operation may take a long time. It takes about 45 minutes on my
machine. This step assembles a nearly complete distribution of
Linux, from binary packages obtained from the Internet.

This step requires Internet access. You need to make sure that
you have proxy access to the Internet if you are behind a corporate
firewall.

Please see the section “Alternative Installation Configuratons” below
for other arguments to install.sh, or for alternative installation
scripts.

Fuego Linux distribution

The Fuego Linux distribution is a distribution of Linux based on
Debian Linux, with many additional packages and tools installed.
These additional packages and tools are required for aspects of Fuego
operation, and to support host-side processes and services needed by
the tests included with Fuego.

For example, the Fuego distribution includes:

	the Jenkins continuous integration server

	the netperf server, for testing network performance.

	the ttc command, which is a tool for board farm management

	the python jenkins module, for interacting with Fuego’s Jenkins
instance

	and many other tools, programs and modules used by Fuego and its tests

Fuego commands execute inside the Fuego docker container, and Fuego
operations initiate in the container, but may access hardware (such as
USB ports, networking, or serial ports) that are outside the container.

Configuring for ‘privileged’ hardware access

In many configurations, Fuego can perform its operations using only
network operations. However, depending on the configuration of your
boards, or your lab hardware, and the relationship between your host
and target computers used for testing, you may need to access other
hardware on your host machine.

To do that, you can create a ‘privileged’ Fuego container, using
the --priv options with install.sh:

$./install.sh --priv

Customizing the privileged container

Note that using --priv causes install.sh to use a different
container creation script. Normally (in the non –priv case),
install.sh uses fuego-host-scripts/docker-create-container.sh.
When --priv is used, Fuego uses
fuego-host-scripts/docker-create-usb-privileged-container.sh.

This latter script (docker-create-usb-privileged-container.sh) can
be edited, before running install.sh, to change the set of hardware
devices that the Docker container will have privileged access to.

This is done by adding more bind mount options to the docker create
command inside this script. Explaining exactly how to do this is
outside the scope of this documentation. Please see documentation and
online resources for the Docker system for information about this.

	The script currently creates bind mounts for:
	
	/dev/bus/usb - USB ports, and newly created ports

	/dev/ttyACM0 - serial port 0

	/dev/ttyACM1 - serial port 1

	/dev/serial - general serial ports, and newly created ports

If you experience problems with Fuego accessing hardware on your host
system, you may need to build the Fuego docker container using
additional bind mounts that are specific to your configuration. Do so
by editing docker-create-used-privileged-container.sh, removing the
old container, and re-running ./install.sh --priv to build a new
container with the desired privileges.

Using an different container name

By default, install.sh creates a Docker image called fuego and a
Docker container called fuego-container. There are some situations
where it is desirable to use different names. For example, having
different container names is useful for Fuego self-testing. It can
also used to do A/B testing when migrating from one release of Fuego
to the next.

You can provide a different name for the Fuego image and container, by
supplying one on the command line for install.sh, like so:

$./install.sh my-fuego

This would create a Docker image named my-fuego and a Docker
container named my-fuego-container

Start the Fuego container

To start the Fuego docker container, use the start.sh script.

$./start.sh

Using a different container name

By default, start.sh will start the container named fuego-container
(which is the default Fuego docker container name). However, if you
created a different container name, you can specify the name
on the command line, like so:

$./start.sh my-fuego-container

When you run the start.sh, the terminal where the script
is run will be placed at a shell prompt inside the Docker container.
The session will be logged in as the root user inside the container.
The container will run until you exit this top-level shell.
Therefore, you should leave it (the shell and the terminal that your
ran start.sh from) running for the duration of your testing.

Access the Fuego Jenkins web interface

Fuego includes a version of Jenkins and a set of plugins as part of
its system. Jenkins is running inside the Fuego docker container. By
default the Fuego Jenkins interface runs on port 8090, with an URL
path /fuego.

Here is an example showing use of firefox to access the Jenkins
interface with Fuego

$ firefox http://localhost:8090/fuego

To access the Fuego interface you can use any browser - not just
Firefox.

In your browser, you should see a screen similar to the following:

[image: _images/fuego-1.1-jenkins-dashboard-new.png]
Note that this web interface is available from any machine that has
access to your host machine via the network. This means that test
operations and test results are available to anyone with access to
your machine. You can configure Jenkins with different security to
avoid this.

Access the Fuego docker command line

For some Fuego operations, it is handy to use the command line (shell
prompt) inside the Docker container. In particular, parts of the
remaining setup of your Fuego system involve running the ftc command
line tool.

Some ftc commands can be run outside the container, but other require
that you execute the command inside the container.

To start another shell prompt inside the currently running Fuego docker
container, you can use the script fuegosh. This helper script is
located at: fuego/fuego-ro/scripts/fuegosh. You may find it
convenient to copy this script to a bin directory on your system
(either /usr/local/bin or ~/bin) that is already in your PATH.

If you run fuegosh, it will place you at a shell prompt inside the
Fuego docker container, like so:

$ fuegosh
root@hostname:/#

Remaining steps

Fuego is now installed and ready for test operations. However, some
steps remain in order to use it with your hardware. You need to:

	Add one or more hardware boards (board definition files)

	Add a toolchain

	Populate the Jenkins interface with test jobs

These steps are described in subsequent sections of this documentation.

	See:
	
	Adding a Board

	Adding a Toolchain

	Adding Test Jobs to Jenkins

Alternative installation configurations

The default installation of Fuego installs the entire Fuego system,
including Jenkins and the Fuego core, into a Docker container running
on a host system, which Jenkins running on port 8090. However, it is
possible to install Fuego in other configurations.

	The configuration alternatives that are supported are:
	
	Install using a different TCP/IP port for Jenkins

	Install without the Jenkins server

	Install directly to your host (not inside a container)

With a different Jenkins TCP/IP port

By default the Fuego uses TCP/IP port 8090, but this can be changed to
another port. This can be used to avoid a conflict with a service
already using port 8090 on your host machine, or so that multiple
instances of Fuego can be run simultaneously.

To use a different port than 8090 for Jenkins, specify it after the
image name on the command line when you run install.sh. Note that this
means that you must specify a Docker image name in order to specify a
non-default port. For example:

$./install.sh fuego 7777

This would install Fuego, with an Docker image name of fuego, a
Docker container name of fuego-container, and with Jenkins
configured to run on port 7777

Without Jenkins

Some Fuego users have their own front-ends or back-ends, and don’t
need to use the Jenkins CI server to control Fuego tests, or visualize
Fuego test results. install.sh supports the option ‘–nojenkins’
which produces a Docker container without the Jenkins server. This
reduces the overhead of the Docker container by quite a bit, for those
users.

Inside the Docker container, the Fuego core is still available.
Boards, toolchains, and tests are configured normally, but the ‘ftc’
command line tool is used to execute tests. There is no need to use
any of the ‘ftc’ functions to manage nodes, jobs or views in the
Jenkins system. ‘ftc’ is used to directly execute tests using ‘ftc
run-test’, and results can be queried using ‘ftc list-runs’ and ‘ftc
gen-report’.

When using Fuego with a different results visualization backend, the
user will use ‘ftc put-run’ to send the test result data to the
configured back end.

Without a container

Usually, for security and test reproducibility reasons, Fuego is
executed inside a Docker container on your host machine. That is, the
default installation of Fuego will create a Docker container using all
the software that is needed for Fuego’s tests. However, in some
configurations it is desirable to execute Fuego directly on a host
machine (not inside a Docker container). A user may have a dedicated
machine, or they may want to avoid the overhead of running a Docker
container.

A separate install script, called install-debian.sh can be used in
place of install.sh to install the Fuego system onto a Debian-based
Linux distribution.

Please note that installing without a container is not advised unless
you know exactly what you are doing. In this configuration, Fuego will
not be able to manage host-side test dependencies for you correctly.

Please note also that executing without a container presents a
possible security risk for your host. Fuego tests can run arbitrary
bash instruction sequences as part of their execution. So there is a
danger when running tests from unknown third parties that they will
execute something on your test host that breaches the security, or
that inadvertently damages you filesystem or data.

However, despite these drawbacks, there are test scenarios (such as
installing Fuego directly to a target board), where this configuration
makes sense.

Adding a Board

Overview

To add your own board to Fuego, there are five main steps:

	Make sure you can access the target via ssh, serial or some
other connection

	Decide whether to use an existing user account, or to create a
user account specifically for testing

	Create a test directory on the target

	Create a board file (on the host)

	Add your board as a node in the Jenkins interface

1 - Set up communication to the target board

In order for Fuego to test a board, it needs to communicate with it
from the host machine where Fuego is running.

The most common way to do this is to use ‘ssh’ access over a network
connection. The target board needs to run an ssh server, and the host
machine connects to it using the ‘ssh’ client.

The method of setting an ssh server up on a board varies from system
to system, but sample instructions for setting up an ssh server on a
raspberry pi are located here:
Raspberry Pi Fuego Setup

Another method that can work is to use a serial connection between
the host and the board’s serial console. Setting this up is outside
the scope of this current documentation, but Fuego uses the “serio”
package to accomplish this. I

2 - Decide on user account for testing (creating one if needed)

On your target board, a user account is required in order to run tests.

The user account used by Fuego is determined by your board file, which
you will configure manually in step 4. You need
to decide which account to use. There are three options:

	use the root account

	use an existing account

	use a new account, dedicated to testing

There are pros and cons to each approach.

My personal preference is to use the root account. Several tests in
Fuego require root privileges. If you are working with a test board,
that you can re-install easily, using the ‘root’ account will allow
you to run the greatest number of tests. However, this should not be
used to test machines that are in production. A Fuego test can run
all kinds of commands, and you should not trust that tests will not
destroy your machine (either accidentally or via some malicious
intent).

If you don’t use ‘root’, then you can either use an existing account,
or create a new account. In most circumstances it is worthwhile to
create a new account dedicated to testing. However, you may not have
sufficient privileges on your board to do this.

In any event, at this point, decide which account you will use for
testing with Fuego, and note it to include in the board file,
described later.

3 - Create test directory on target

First, log in to your target board, and create a directory where
tests can be run. Usually, you do this as root, and a commonly
used directory for this is “/home/fuego”. To do this,
do the following:

For target with network connectivity :

$ ssh root@your_target
<target>$ mkdir /home/fuego
<target>$ exit

For target with Serial connectivity :

Use minicom or any other serial terminal tool.
Login to the target by giving username and password.
Create the directory ‘fuego’ as below:

<target>$ mkdir /home/fuego

Create board file

Now, create your board file.
The board files reside in <fuego-source-dir>/fuego-ro/boards, and
each file has a filename with the name of the board, with the
extension “.board”.

The easiest way to create a board file is to copy an existing one,
and edit the variables to match those of your board. The following
instructions are for a board called ‘myboard’, that has networking
access, an ssh daemon running on target, and the ARM architecture.

Do the following:

$ cd fuego-ro/boards
$ cp template-dev.board myboard.board
$ vi myboard.board

Note

You can use your own editor in place of ‘vi’*

Set board parameters

A board file has parameters which define how Fuego interacts with your
board. There are lots of different parameters, but the most important
to get started quickly (and the most commonly edited) are:

TRANSPORT parameters

Each board needs to specify how Fuego will communicate with it.
This is done by specifying a TRANSPORT, and a few variables associated
with that transport type.

	TRANSPORT - this specifies the transport to use with the target

	there are three transport types currently supported: ‘ssh’,
‘serial’, ‘ttc’

	Most boards will use the ‘ssh’ or ‘serial’ transport type

	ex: TRANSPORT=”ssh”

Most targets require the following:

	LOGIN - specifies the user account to use for Fuego operations

	PASSWORD - specifies the password for that account (if any)

There are some parameters that are specific to individual transports.

For targets using ssh:

	IPADDR

	SSH_PORT

	SSH_KEY

IPADDR is the network address of your board. SSH_PORT is the port
where the ssh daemon is listening for connections. By default this is
22, but you should set this to whatever your target board uses.
SSH_KEY is the absolute path where an SSH key file may be found (to
allow password-less access to a target machine).

An example would be:

	SSH_KEY=”/fuego-ro/boards/myboard_id_rsa”

SSH_PORT and SSH_KEY are optional.

For targets using serial:

	SERIAL

	BAUD

	IO_TIME_SERIAL

SERIAL is serial port name used to access the target from the host.
This is the name of the serial device node on the host (or in the
container).this is specified without the /dev/ prefix.

Some examples are:

	ttyACM0

	ttyACM1

	ttyUSB0

BAUD is the baud-rate used for the serial communication, for eg.
“115200”.

IO_TIME_SERIAL is the time required to catch the command’s response
from the target. This is specified as a decimal fraction of a second,
and is usually very short. A time that usually works is “0.1”
seconds.

	ex: IO_TIME_SERIAL=”0.1”

This value directly impacts the speed of operations over the serial
port, so it should be adjusted with caution. However, if you find
that some operations are not working over the serial port, try
increasing this value (in small increments - 0.15, 0.2, etc.)

Note

In the case of TRANSPORT=”serial”, Please make sure that docker
container and Fuego have sufficient permissions to access the
specified serial port. You may need to modify
docker-create-usb-privileged-container.sh prior to making your docker
image, in order to make sure the container can access the ports.

Also, if check that the host filesystem permissions on the device node
(e.g /dev/ttyACM0 allows access. From inside the container you can try
using the sersh or sercp commands directly, to test access to the
target.

For targets using ttc:

	TTC_TARGET

TTC_TARGET is the name of the target used with the ‘ttc’ command.

Other parameters

	BOARD_TESTDIR

	ARCHITECTURE

	TOOLCHAIN

	DISTRIB

	BOARD_CONTROL

The BOARD_TESTDIR directory is an absolute path in the filesystem on
the target board where the Fuego tests are run.
Normally this is set to something like “/home/fuego”, but you can set
it to anything. The user you specify for LOGIN should have access
rights to this directory.

The ARCHITECTURE is a string describing the architecture used by
toolchains to build the tests for the target.

The TOOLCHAIN variable indicates the toolchain to use to build the
tests for the target. If you are using an ARM target, set this to
“debian-armhf”. This is a default ARM toolchain installed in the
docker container, and should work for most ARM boards.

If you are not using ARM, or for some reason the pre-installed arm
toolchains don’t work for the Linux distribution installed on your
board, then you will need to install your own SDK or toolchain. In
this case, follow the steps in [[Adding a toolchain]], then come back
to this step and set the TOOLCHAIN variable to the name you used for
that operation.

For other variables in the board file, see the section below.

The DISTRIB variable specifies attributes of the Linux distribution
running on the board, that are used by Fuego. Currently, this is
mainly used to tell Fuego what kind of system logger the operating
system on the board has. Here are some options that are available:

	base.dist - a “standard” distribution that implements syslogd-style
system logging. It should have the commands: logread, logger, and
/var/log/messages

	nologread.dist - a distribution that has no ‘logread’ command, but
does have /var/log/messages

	nosyslogd.dist - a distribution that does not have syslogd-style
system logging.

If DISTRIB is not specified, Fuego will default to using
“nosyslogd.dist”.

The BOARD_CONTROL variable specifies the name of the system used to
control board hardware operations. When Fuego is used in conjunction
with board control hardware, it can automate more testing
functionality. Specifically, it can reboot the board, or re-provision
the board, as needed for testing. As of the 1.3 release, Fuego only
supports the ‘ttc’ board control system. Other board control systems
will be introduced and supported over time.

Add node to Jenkins interface

Finally, add the board in the Jenkins interface.

In the Jenkins interface, boards are referred to as “Nodes”.

You can see a list of the boards that Fuego knows about using:

	$ ftc list-boards

When you run this command, you should see the name of the board you
just created.

You can see the nodes that have already been installed in Jenkins
with:

	$ ftc list-nodes

To actually add the board as a node in jenkins, inside the docker
container, run the following command at a shell prompt:

	$ ftc add-nodes -b <board_name>

Board-specific test variables

The following other variables can also be defined in the board file:

	MAX_REBOOT_RETRIES

	FUEGO_TARGET_TMP

	FUEGO_BUILD_FLAGS

See Variables for the definition and usage of these
variables.

General Variables

File System test variables (SATA, USB, MMC)

If running filesystem tests, you will want to declare the Linux device
name and mountpoint path, for the filesystems to be tested. There are
three different device/mountpoint options available depending on the
testplan you select (SATA, USB, or MMC). Your board may have all of
these types of storage available, or only one.

To prepare to run a test on a filesystem on a sata device, define the
SATA device and mountpoint variables for your board.

For example, if you had a SATA device with a mountable filesystem
accessible on device /dev/sdb1, and you have a directory on your
target of /mnt/sata that can be used to mount this device at, you
could declare the following variables in your board file.

	SATA_DEV=”/dev/sdb1”

	SATA_MP=”/mnt/sata”

You can define variables with similar names (USB_DEV and USB_MP, or
MMC_DEV and MMC_MP) for USB-based filesystems or MMC-based
filesystems.

LTP test variables

LTP (the Linux Test Project) test suite is a large collection of tests
that require some specialized handling, due to the complexity and
diversity of the suite. LTP has a large number of tests, some of which
may not work correctly on your board. Some of the LTP tests depend on
the kernel configuration or on aspects of your Linux distribution or
your configuration.

You can control whether the LTP posix test succeeds by indicating the
number of positive and negative results you expect for your board.
These numbers are indicated in test variables in the board file:

	LTP_OPEN_POSIX_SUBTEST_COUNT_POS

	LTP_OPEN_POSIX_SUBTEST_COUNT_NEG

You should run the LTP test yourself once, to see what your baseline
values should be, then set these to the correct values for your board
(configuration and setup).

Then, Fuego will report any deviation from your accepted numbers, for
LTP tests on your board.

LTP may also use these other test variables defined in the board file:

	FUNCTIONAL_LTP_HOMEDIR - If this variable is set, it indicates
where a pre-installed version of LTP resides in the board’s
filesystem. This can be used to avoid a lengthy deploy phase on
each execution of LTP.

	FUNCTIONAL_LTP_BOARD_SKIPLIST - This variable has a list of
individual LTP test programs to skip.

See Functional.LTP for more information about
the LTP test, and test variables used by it.

Adding a toolchain

Introduction

In order to build tests for your target board, you need to install a
toolchain (often in the form of an SDK) into the Fuego system, and let
Fuego know how to access it.

Adding a toolchain to Fuego consists of these steps:

	
	obtain (generate or retrieve) the toolchain

	
	copy the toolchain to the container

	
	install the toolchain inside the container

	
	create a -tools.sh file for the toolchain

	
	reference the toolchain in the appropriate board file

Obtain a toolchain

First, you need to obtain a toolchain that will work with your board.
You should have a toolchain that produces software which will work
with the Linux distribution on your board. This is usually obtained
from your build tool, if you are building the distribution yourself,
or from your semiconductor supplier or embedded Linux OS vendor, if
you have been provided the Linux distribution from an external source.

Installing a Debian cross-toolchain target

If you are using an Debian-based target, then to get started, you may
use a script to install a cross-compiler toolchain into the container.
For example, for an ARM target, you might want to install the Debian
armv7hf toolchain. You can even try a Debian toolchain with other
Linux distributions. However, if you are not using Debian on your
target board, there is no guarantee that this will produce correct
software for your board. It is much better to install your own SDK
for your board into the fuego system.

To install a Debian cross toolchain into the container, get to the
shell prompt in the container and use the following script:

	/fuego-ro/toolchains/install_cross_toolchain.sh

To use the script, pass it the argument naming the cross-compile
architecture you are using. Available values are:

	arm64 armel armhf mips mipsel powerpc ppc64el

Execute the script, inside the docker container, with a single
command-line option to indicate the cross-toolchain to install. You
can use the script more than once, if you wish to install multiple
toolchains.

Example:

	# /fuego-ro/toolchains/install_cross_toolchain.sh armhf

The Debian packages for the specified toolchain will be installed into
the docker container.

Building a Yocto Project SDK

When you build an image in the Yocto Project, you can also build an
SDK to go with that image using the ‘-c do_populate_sdk’ build step
with bitbake.

To build the SDK in Yocto Project, inside your yocto build directory
do:

	bitbake <image-name> -c do_populate_sdk

This will build an SDK archive (containing the toolchain, header files
and libraries needed for creating software on your target, and put it
into the directory <build-root>/tmp/deploy/sdk/

For example, if you are building the ‘core-image-minimal’ image, you
would execute:

$ bitbake core-image-minimal -c do_populate_sdk

At this step look in tmp/deploy/sdk and note the name of the sdk
install package (the file ending with .sh).

Install the SDK in the docker container

To allow fuego to use the SDK, you need to install it into the fuego
docker container. First, transfer the SDK into the container using
docker cp.

With the container running, on the host machine do:

	docker ps (note the container id)

	docker cp tmp/deploy/sdk/<sdk-install-package> <container-id>:/tmp

This last command will place the SDK install package into the /tmp
directory in the container.

Now, install the SDK into the container, whereever you would like.
Many toolchains install themselves under /opt.

At the shell inside the container, run the SDK install script
(which is a self-extracting archive):

	/tmp/poky-….sh

	during the installation, select a toolchain installation
location, like: /opt/poky/2.0.1

These instructions are for an SDK built by the Yocto Project. Similar
instructions would apply for installing a different toolchain or SDK.
That is, get the SDK into the container, then install it inside the
container.

Create a -tools.sh file for the toolchain

Now, fuego needs to be told how to interact with the toolchain.
During test execution, the fuego system determines what toolchain to
use based on the value of the TOOLCHAIN variable in the board file for
the target under test. The TOOLCHAIN variable is a string that is
used to select the appropriate ‘<TOOLCHAIN>-tools.sh’ file in
/fuego-ro/toolchains.

You need to determine a name for this TOOLCHAIN, and then create a
file with that name, called $TOOLCHAIN-tools.sh. So, for example if
you created an SDK with poky for the qemuarm image, you might call the
TOOLCHAIN “poky-qemuarm”. You would create a file called
“poky-qemuarm-tools.sh”

The -tools.sh file is used by Fuego to define the environment
variables needed to interact with the SDK. This includes things like
CC, AR, and LD. The complete list of variables that this script
neeeds to provide are described on the page [[tools.sh]]

Inside the -tools.sh file, you execute instructions that will set the
environment variables needed to build software with that SDK. For an
SDK built by the Yocto Project, this involves setting a few variables,
and calling the environment-setup… script that comes with the SDK.
For SDKs from other sources, you can define the needed variables by
directly exporting them.

Here is an example of the tools.sh script for poky-qemuarm. This is
in the sample file /fuego-ro/toolchains/poky-qemuarm-tools.sh:

fuego toolchain script
this sets up the environment needed for fuego to use a
toolchain
this includes the following variables:
CC, CXX, CPP, CXXCPP, CONFIGURE_FLAGS, AS, LD, ARCH
CROSS_COMPILE, PREFIX, HOST, SDKROOT
CFLAGS and LDFLAGS are optional
#
this script is sourced by /fuego-ro/toolchains/tools.sh

POKY_SDK_ROOT=/opt/poky/2.0.1
export SDKROOT=${POKY_SDK_ROOT}/sysroots/
armv5e-poky-linux-gnueabi

the Yocto project environment setup script changes PATH so
that python uses
libs from sysroot, which is not what we want, so save the
original path
and use it later
ORIG_PATH=$PATH

PREFIX=arm-poky-linux-gnueabi
source ${POKY_SDK_ROOT}/environment-setup-armv5e-
poky-linux-gnueabi

HOST=arm-poky-linux-gnueabi

don't use PYTHONHOME from environment setup script
unset PYTHONHOME
env -u PYTHONHOME

Reference the toolchain in a board file

Now, to use that SDK for building test software for a particular
target board, set the value of the TOOLCHAIN variable in the board
file for that target.

	Edit the board file:
	
	vi /fuego-ro/boards/myboard.board

And add (or edit) the line:

	TOOLCHAIN=”poky-qemuarm”

Notes

Python execution

You may notice that some of the example scripts set the environment
variable ORIG_PATH. This is used by the function
[[function_run_python|run_python]] internally to execute the
container’s default python interpreter, instead of the interpreter
that was built by the Yocto Project.

Adding test jobs to Jenkins

Before performing any tests with Fuego, you first need to
add Jenkins jobs for those tests in Jenkins.

To add jobs to Jenkins, you use the ‘ftc’ command line tool.

Fuego comes with over a hundred different tests, and not
all of them will be useful for your environment or testing needs.

In order to add jobs to Jenkins, you first need to have
created a Jenkins node for the board for which you wish to add
the test. If you have not already added a board definition,
or added your board to Jenkins, please see:
Adding a board

One your board is defined as a Jenkins node, you can add test
jobs for it.

There are two ways of adding test jobs, individually, and
using testplans. In both cases, you use the ‘ftc add-jobs’
command.

Selecting tests or plans

The list of all tests that are available can be seen
by running the command ‘ftc list-tests’.

Run this command inside the docker container, by going to
the shell prompt inside the Fuego docker container, and typing

(container_prompt)$ ftc list-tests

To see the list of plans that come pre-configured with Fuego,
use the command ‘ftc list-plans’.

(container_prompt)$ ftc list-plans

A plan lists a set of tests to execute. You can examine the
list of tests that a testplan includes, by examining the testplan
file. The testplan files are in JSON format, and are in the
directory fuego-core/engine/overlays/testplans.

Adding individual tests

To add an individual test, add it using the ‘ftc add-jobs’
command. For example, to add the test “Functional.hello_world”
for the board “beaglebone”, you would use the following command:

(container prompt)$ ftc add-job -b beaglebone -t
Functional.hello_world

Configuring job options

When Fuego executes a test job, several options are available to
control aspects of job execution. These can be configued on the
‘ftc add-job’ command line.

The options available are:

	timeout

	rebuild flag

	reboot flag

	precleanup flag

	postcleanup flag

See ‘ftc add-jobs help’ for details about these options and how to
specify them.

Adding tests for more than one board

If you want to add tests for more than one board at a time, you can do
so by specifying multiple board names after the ‘-b’ option with
‘ftc add-jobs’.Board names should be a single string argument, with
individual board names separated by commas.

For example, the following would add a job for Functional.hello_world
to each of the boards rpi1, rpi2 and beaglebone.

(container prompt)$ ftc add-job -b rpi1,rpi2,beaglebone -t
Functional.hello_world

Adding jobs based on testplans

A testplan is a list of Fuego tests with some options for each one.
You can see the list of testplans in your
system with the following command:

(container prompt)$ ftc list-plans

To create a set of jobs related to docker image testing, for the
‘docker’ board on the system, do the following:

(container prompt)$ ftc add-jobs -b docker -p testplan_docker

To create a set of jobs for a board called ‘beaglebone’,
do the following:

(container prompt)$ ftc add-jobs -b myboard -p testplan_smoketest

The “smoketest” testplan has about 20 tests that exercise a variety of
features on a Linux system. After running these commands, a set of
jobs will appear in the Jenkins interface.

Once this is done, your Jenkins interface should look something like
this:

[image: _images/fuego-1.1-jenkins-dashboard-beaglebone-jobs.png]

Adding views to Jenkins

It is useful to organize your Jenkins test jobs into “views”. These
appear as tabs in the main Jenkins interface. Jenkins always provides
a tab that lists all of the installed jobs, call “All”. Other views
that you create will appear on tabs next to this, on the main Jenkins
page.

You can define new Jenkins views using the Jenkins interface, but
Fuego provides a command that allows you to easily create views for
boards, or for sets of related tests (by name and wildcard), from the
Linux command line (inside the container).

The usage line for this command is:

Usage: ftc add-view <view-name> [<job_spec>]

The view-name parameter indicates the name of the view in Jenkins, and
the job-spec parameter is used to select the jobs which appear in that
view.

If the job_spec is provided and starts with an ‘=’, then it is
interpreted as one or more specific job names. Otherwise, the view is
created using a regular expression statement that Jenkins uses to
select the jobs to include in the view.

Adding a board view

By convention, most Fuego users populate their Jenkins interface with
a view for each board in their system (well, for labs with a small
number of boards, anyway).

The simplest way to add a view for a board is to just specify the
board name, like so:

(container_prompt)$ ftc add-view myboard

When no job specification is provided, the ‘add-view’ command
will create one by prefixing the view name with
wildcards. For the example above, the job spec would consist
of the regular expression “.*myboard.*”.

Customizing regular expressions

Note that if your board name is not unique enough, or is a string
contained in some tests, then you might see some test jobs listed that
were not specific to that board. For example, if you had a board name
“Bench”, then a view you created with the view-name of “Bench”, would
also include Benchmarks. You can work around this by specifying a
more details regular expression for your job spec.

For example:

(container_prompt)$ ftc add-view Bench "Bench.*"

This would only include the jobs that started with “Bench” in the
“Bench” view. Benchmark jobs for other boards would not be included,
since they only have “Benchmark” somewhere in the middle of their job
name - not at the beginning.

Add view by test name regular expression

This command would create a view to show LTP results for multiple
boards:

(container_prompt)$ ftc add-view LTP

This example creates a view for “fuego” tests. This view
would include any job that has the word “fuego” as part of it.
By convention, all Fuego self-tests have part of their name
prefixed with “fuego_”.

(container_prompt)$ ftc add-view fuego ".*fuego_.*"

And the following command will show all the batch jobs defined in the
system:

(container_prompt)$ ftc add-view .*.batch

Add specific jobs

If the job specification starts with “=”, it is a comma-separated
list of job names. The job names must be complete, including the
board name, spec name and full test name.

(container_prompt)$ ftc add-view network-tests =docker.default.
Functional.ipv6connect,docker.default.Functional.netperf

In this command, the view would be named “network-tests”, and it would
show the jobs “docker.default.Functional.ipv6connect” and
“docker.default.Functional.netperf”.

Test variables

Introduction

When Fuego executes a test, shell environment variables are used to
provide information about the test environment, test execution
parameters, communications methods and parameters, and other items.

These pieces of information are originate from numerous different
places. An initial set of test variables comes in the shell
environment from either Jenkins or from the shell in which ftc is
executed (depending on which one is used to invoke the test).

The information about the board being tested comes primarily from two
sources:

	The board file

	The stored board variables file

Additional information comes from the testplan and test spec that are
used for this particular test run. Finally, test variables can be
defined on the ftc command line. These test variables (know as
dynamic variables, override variables that come from other sources.

Test variables can be simple strings, or they may be shell functions.

When a test is run, Fuego gathers information from all these sources,
and makes them available to the test (and uses them itself) to control
test execution.

Board file

The board file contains static information about a board. It is
processed by the overlay system, and the values inside it appear as
variables in the environment of a test, during test execution.

The board file resides in /fuego-ro/boards and the filename
ends in the string “.board”:

	/fuego-ro/boards/{board_name}.board

There are a number of variables which are used by the Fuego system
itself, and there may also be variables that are used by individual
tests.

Common board variables

Here is a list of the foo bar variables which might be found in a board file:

	ARCHITECTURE - specifies the architecture of the board

	BAUD - baud rate for serial device (if using ‘serial’ transport)

	BOARD_TESTDIR - directory on board where tests are executed

	BOARD_CONTROL - the mechanism used to control board hardware
(e.g. hardware reboot)

	DISTRIB - filename of distribution overlay file
(if not the default)

	IO_TIME_SERIAL - serial port delay parameter
(if using ‘serial’ transport)

	IPADDR - network address of the board

	LOGIN - specifies the user account to use for Fuego operations

	PASSWORD - specifies the password for the user account on the board
used by Fuego

	PLATFORM - specifies the toolchain to use for the platform

	SATA_DEV - specifies a filesystem device node (on the board) for
SATA filesystem tests

	SATA_MP - specifies a filesystem mount point (on the board)
for SATA filesystem tests

	SERIAL - serial device on host for board’s serial console
(if using ‘serial’ transport)

	SRV_IP - network address of server endpoint, for networking tests
(if not the same as the host)

	SSH_KEY - the absolute path to key file with ssh key for
password-less ssh operations (e.g. “/fuego-ro/board/myboard_id_rsa”)

	SSH_PORT - network port of ssh daemon on board (if using
ssh transport)

	TRANSPORT - this specifies the transport to use with the target

	USB_DEV - specifies a filesystem device node (on the board) for
USB filesystem tests

	USB_MP - specifies a filesystem mount point (on the board) for
USB filesystem tests

See Adding a board for more details about these
variables.

A board may also have additional variables, including variables that
are used for results evaluation for specific tests.

Overlay system

The overlay system gathers variables from several places, and puts
them all together into a single file which is then source’ed into the
running test’s environment.

It takes information from:

	The board files (both static and dynamic)

	The testplan

	The test spec

	The overlay files

and combines them all, using a set of priorities, into a single
file called prolog.sh, which is then source’ed into the running
shell environment of the Fuego test being executed.

The overlay system is described in greater detail here:
Overlay_Generation

Stored variables

Stored board variables are test variables that are defined on a
per-board basis, and can be modified and managed under program
control.

Stored variables allow the Fuego system, a test, or a user to store
information that can be used by tests. This essentially creates an
information cache about the board, that can be both manually and
programmatically generated and managed.

The information that needs to be held for a particular board depends
on the tests that are installed in the system. Thus the system needs
to support ad-hoc collections of variables. Just putting everything
into the static board file would not scale, as the number of tests
increases.

Note

The LAVA test framework has a similar concept called
a board dictionary.

One use case for this to have a “board setup” test, that scans for
lots of different items, and populates the stored variables with
values that are used by other tests. Some items that are useful to
know about a board take time to discover (using e.g. find on the
target board), and using a board dynamic variable can help reduce the
time required to check these items.

	The board stored variables are kept in the file:
	
	/fuego-rw/boards/{board_name}.vars

These variables are included in the test by the overlay generator.

Commands for interacting with stored variables

A user or a test can manipulate a board stored variable using the ftc
command.The following commands can be used to set, query and delete
variables:

	tc query-board - to see test variables (both regular board
variables and stored variables)

	ftc set-var - to add or update a stored variable

	ftc delete-var - to delete a stored variable

ftc query-board

ftc query-board is used to view the variables associated with a
Fuego board. You can use the command to see all the variables, or
just a single variable.

Note that ftc query-board shows the variables for a test that come
from both the board file and board stored variables file (that is,
both ‘static’ board variables and stored variables). It does not show
variables which come from testplans or spec files, as those are
specific to a test.

	The usage is:
	
	ftc query-board <board> [-n <VARIABLE>]

Examples:

$ ftc query-board myboard
$ ftc query-board myboard -n PROGRAM_BC

The first example would show all board variables, including functions.
The second example would show only the variable PROGRAM_BC, if it
existed, for board ‘myboard’.

ftc set-var

ftc set-var allows setting or updating the value of a board stored
variable.

The usage is:

	ftc set-var <board> <VARIABLE>=<value>

By convention, variable names are all uppercase, and function names
are lowercase, with words separated by underscores.

Example:

$ ftc set-var PROGRAM_BC=/usr/bin/bc

ftc delete-var

ftc delete-var removes a variable from the stored variables file.

Example:

$ ftc delete-var PROGRAM_BC

Example usage

The test Functional.fuego_board_check could detect the path
for the foo
binary, (e.g. is_on_target foo PROGRAM_FOO) and call
ftc set-var $NODE_NAME PROGRAM_FOO=$PROGRAM_FOO.
This would stay persistently
defined as a test variable, so other tests could use $PROGRAM_FOO
(with assert_define, or in report or cmd function calls.)

Example Stored variables

Here are some examples of variables that can be kept as stored
variables, rather than static variables from the board file:

	SATA_DEV = Linux device node for SATA file system tests

	SATA_MP = Linux mount point for SATA file system tests

	LTP_OPEN_POSIX_SUBTEST_COUNT_POS = expected number of pass results
for LTP OpenPosix test

	LTP_OPEN_POSIX_SUBTEST_COUNT_NEG = expected number of fail results
for LTP OpenPosix test

	PROGRAM_BC = path to ‘bc’ program on the target board

	MAX_REBOOT_RETRIES = number of retries to use when rebooting a
board

Spec variables

A test spec can define one or more variables to be used with a test.
These are commonly used to control test variations, and are specified
in a spec.json file.

When a spec file defines a variable associated with a named test spec,
the variable is read by the overlay generator on test execution, and
the variable name is prefixed with the name of the test, and converted
to all upper case.

For example, support a test called Functional.foo had a test spec
that defined the variable ‘args’ with a line
like the following in its spec.json file:

"default": {
 "args": "-v -p2"
}

When the test was run with this spec (the “default” spec), then the
variable FUNCTIONAL_FOO_ARGS would be defined, with the value
“-v -p2”.

See Test_Specs_and_Plans for more
information about specs and plans.

Dynamic variables

Another category of variables used during testing are dynamic
variables. These variables are defined on the command line of
ftc run-test using the --dynamic-vars option.

The purpose of these variables is to allow scripted variations when
running ftc run-test The scripted variables are processed and
presented the same way as spec variables, which is to say that the
variable name is prefixed with the test name, and converted to all
upper case.

For example, if the following command was issued:

	ftc run-test -b beaglebone -t Functional.foo --dynamic_vars *ARGS=-p*

then during test execution the variable FUNCTIONAL_FOO_ARGS would be
defined with the value “-p”.

See Dynamic Variables for more information.

Variable precedence

Here is the precedence of variable definition for Fuego, during test
execution:

	(from lowest to highest)
	
	environment variable (from Jenkins or shell where ‘ftc run-test’ is
invoked)

	board variable (from fuego-ro/boards/$BOARD.board file)

	stored variable (from fuego-rw/boards/$BOARD.vars file)

	spec variable (from spec.json file)

	dynamic variable (from ftc command line)

	core variable (from Fuego scripts)

	fuego_test variable (from fuego_test.sh)

Spec and dynamic variables are prefixed with the test name, and
converted to upper case. That tends to keep them in a separate name
space from the rest of the test variables.

Jenkins User interface

By default, Fuego uses the Jenkins continuous integration system to
manage boards, tests, logs, and test results.

The Jenkins user interface is web-based. This page shows several
screenshots of different pages in the Jenkins interface.

Through this interface, you can see the status of tests that have run,
review the logs for tests, and schedule new tests to run on target
boards. You also use this interface to add new boards and new tests
to the system.

Note that Jenkins objects are:

	nodes

	jobs

	builds

	views

These are different from the Fuego names for the same objects. The
first three of these Jenkins objects correspond to the Fuego objects
of: boards, tests and runs, respectively.

Main dashboard

The main dashboard of Jenkins looks like the following:

New Installation

When Fuego has just been installed, there is nothing in the Jenkins
interface (no nodes, jobs or views). The interface should look
something like this:

[image: _images/fuego-1.1-jenkins-dashboard-new.png]

With a single node (board) added

Here is the main dashboard of Jenkins, after a single node (called
‘beaglebone’ in this case) has been added. Note the node (board)
appears in the left sidebar under “Build Executor Status”:

[image: _images/fuego-1.1-jenkins-dashboard-beaglebone.png]

With beaglebone node and jobs

Here is the main dashboard of Jenkins, showing a single node
(beaglebone) and jobs for this board.

[image: _images/fuego-1.1-jenkins-dashboard-beaglebone-jobs.png]

Dashboard with jobs in Build Queue

Here is the Jenkins dashboard with a lot of jobs in the Build Queue.
Note the list of jobs in the left side-bar, in the “Build Queue” pane.

[image: _images/fuego-1.1-jenkins-dashboard-batch-build-queue.png]

Node pages

If you click on the node in the Build Executor Status pane, then
you can see a list of the jobs associated with a node.

Node status page

Here is the status for the beaglebone node.

[image: _images/fuego-1.1-jenkins-beaglebone-node.png]

Job pages

If you click on a job in the Jenkins interface, you can see
information about an individual job. This page shows information about
the status of the job, including a Build History for the job (in the
left sidebar).

You can start a job by clicking on the “Build Now” button in the left
menu.

Functional job status page

Here is a page showing the status information for a Functional test
called ‘hello_world’. The main area of the screen has information
about the last successful and failed builds of the test. Note the
left sidebar pane with “Build History”, to see individual test
execution results.

[image: _images/fuego-1.1-jenkins-hello_world-job.png]

Benchmark job - starting a build

Here is a picture of a job build being started. Note the progress bar
in the Build History pane in the left sidebar.

[image: _images/fuego-1.1-jenkins-dhrystone-start-build.png]

Benchmark job - before successful execution

Before a Benchmark job completes it has no data to plot on it’s chart,
and appears similar to a Functional Job status page:

[image: _images/fuego-1.1-jenkins-Dhrystone-job.png]

Benchmark job - with plot of metrics

Normally, a Benchmark page shows one or more plots showing the values
for data returned by this benchmark.

[image: _images/fuego-1.1-jenkins-dhrystone-job-plot.png]

Build pages

A build page shows the results of a single execution of a job (test)
on a board. You can click on the build number in the Jenkins
interface to see this page.

Results from a job build

Here are the results from the execution of the “hello world” job.
This was the results of running the Fuego test
“Functional.hello_world” on a beaglebone board.

[image: _images/fuego-1.1-jenkins-hello_world-build.png]

Test log results

You can examine the different logs for each test. Each test produces
a log from the program that ran on the board. This is available by
following a link called “log” from the ‘build’ page for that test run.
You can see the console log, which shows the output of commands for
this test, by clicking on “console log” in the build interface (or the
build drop-down menu in the Build History list).

Drhystone test log

Here are results from a run of the Dhrystone test on a beaglebone
board:

[image: _images/fuego-1.1-jenkins-dhrystone-log.png]

Jenkins Console log

Here is the console log for a test executed on the beaglebone:

[image: _images/fuego-1.1-jenkins-console-log.png]

View pages

A view is an area in the main dashboard that shows a collection
of jobs with a particular set of status columns for each job. They
appear as tabs in the main dashboard view of Jenkins. You can create
your own view to see a subset of the jobs that are available in
Jenkins

Here are some screen shots showing how to add a new view to Jenkins.

Screen to add a new view

Here is the screen to add a new view to Jenkins.

[image: _images/fuego-1.1-jenkins-add-view-beaglebone.png]

Screen to configure the view settings

Here is the screen to configure view settings. Note the use of a
regular expression to control what jobs to see in this view. You can
also control what status columns to display in the view.

[image: _images/fuego-1.1-jenkins-config-view-beaglebone.png]

Other Jenkins pages

Build History

The global build history page is available by clicking on the Build
History link in the main dashboard page of Jenkins. It shows the
execution time and status for a recent time period.

[image: _images/fuego-1.1-jenkins-build-history.png]

Jenkins management

You can manage Jenkins using the Manage Jenkins page, available
from the top-level dashboard page in Jenkins. From here you can
update Jenkins itself, install or remove plugins, and perform other
management operations for Jenkins.

[image: _images/fuego-1.1-jenkins-management.png]

Adding or Customizing a Distribution

Introduction

Although Fuego is configured to execute on a standard Linux
distribution, Fuego supports customizing certain aspects of its
interaction with the system under test. Fuego uses several features
of the operating system on the board to perform aspects of its test
execution. This includes things like accessing the system log,
flushing file system caches, and rebooting the board. The ability to
customize Fuego’s interaction with the system under test is useful in
case you have a non-standard Linux distribution (where, say, certain
features of Linux are missing or changed), or when you are trying to
use Fuego with a non-Linux system.

A developer can customize the distribution layer of Fuego in one of
two ways:

	adding overlay functions to a board file by creating a new

	distribution overlay file

Distribution overlay file

A distribution overlay file can be added to Fuego, by adding a new
‘’.dist’’ file to the directory: fuego-core/overlays/distrib

The distribution functions are defined in the file:
fuego-core/overlays/base/base-distrib.fuegoclass These include
functions for doing certain operations on your board, including:

	ov_get_firmware

	ov_rootfs_reboot

	ov_rootfs_state

	ov_logger

	ov_rootfs_sync

	ov_rootfs_drop_caches

	ov_rootfs_oom

	ov_rootfs_kill

	ov_rootfs_logread

You can define your own distribution overlay by defining a new
“.dist” file in fuego-core/overlays/distribs. (e.g. mydist.dist)
Basically, you inherit functions from base-distrib.fuegoclass, and
write override functions in mydist.dist to perform those operations
the way they need to be done on your distribution.

You can look up what each override function should do by
reading the fuegoclass code, or looking at the function documentation
at: Test Script APIs

The inheritance mechanism and syntax for Fuego overlay files is
described at: Overlay Generation

The goal of the distribution abstraction layer in Fuego is to allow
you to customize Fuego operations to match what is available on your
target board. For example, the default (base class)
ov_rootfs_logread() function assumes
that the target board has the command “/sbin/logread” that can be used
to read the system log. If your distribution does not have
“/sbin/logread”, or indeed if there is no system log, then you would
need to override ov_rootfs_logread() to do something appropriate for
your distribution or OS.

Note: In fact, this is a common enough situation that there is
already a ‘nologread.dist’ file already in the overlay/distribs
directory.

Similarly, ov_rootfs_kill uses the /proc
filesystem, /proc/$pid/status, and the cat, grep, kill and sleep
commands on the target board to do its work. If our distribution is
missing any of these, then you would need to override ov_rootfs_kill()
with a function that did the appropriate thing on your distribution
(or OS).

Existing distribution overlay files

Fuego provides a few distribution overlay files for certain situations
that commonly occur in embedded Linux testing.

	nologread.dist - for systems that do not have a ‘logread’ command

	nosyslogd.dist - for systems that don’t have any system logger

Referencing the distribution in the board file

Inside the board file for your board, indicate the distribution
overlay you are using by setting the DISTRIB variable.

If the DISTRIB variable is not set, then the default distribution
overlay functions are used.

For example, if your embedded distribution of Linux does not have a
system logger, you can override the normal logging interaction of
Fuego by using the ‘nosyslogd.dist’ distribution overlay. To do this,
add the following line to the board file for target board where this
is the case:

DISTRIB="nosyslogd.dist"

Testing Fuego/distribution interactions

There is a test you can run to see if the minimal command set
required by Fuego is supported on your board. It does not require
a toolchain, since it only runs shell script code on the board.
The test is Functional.fuego_board_check.

This test may work on your board, if your board supports a POSIX
shell interface. However, note that this test reflects the commands
that are used by Fuego core and by the default distribution overlay.
If you make your own distribution overlay, you may want to create a
version of this test that omits checks for things that your
distribution does not support, or that adds checks for things
that your distribution overlay uses to interact with the board.

Notes

Fuego does not yet fully support testing non-Linux operating systems.
There is work-in-progress to support testing of NuttX, but that
feature is not complete as of this writing. In any event, Fuego does
include a ‘NuttX’ distribution overlay, which may provide some ideas
if you wish to write your own overlay for a non-Linux OS.

NuttX distribution overlay

By way of illustration, here are the contents of the NuttX
distribution overlay file (fuego-core/overlays/distribs/nuttx.dist).

override-func ov_get_firmware() {
 FW="$(cmd uname -a)"
}

override-func ov_rootfs_reboot() {
 cmd "reboot"
}

override-func ov_init_dir() {
 # no-op
 true
}

override-func ov_remove_and_init_dir() {
 # no-op
 true
}

override-func ov_rootfs_state() {
 cmd "echo; date; echo; free; echo; ps; echo; mount" || \
 abort_job "Error executing rootfs_status operation on target"
}

override-func ov_logger() {
 # messages are in $@, just emit them
 echo "Fuego log messages: $@"
}

$1 = tmp dir, $2 = before or after
override-func ov_rootfs_logread() {
 # no-op
 true
}

override-func ov_rootfs_sync() {
 # no-op
 true
}

override-func ov_rootfs_drop_caches() {
 # no-op
 true
}

override-func ov_rootfs_oom() {
 # no-op
 true
}

override-func ov_rootfs_kill() {
 # no-op
 true
}

Hypothetical QNX distribution

Say you wanted to add support for testing QNX with Fuego.

Here are some first steps to add a QNX distribution overlay:

	set up your board file

	create a custom QNX.dist (stubbing out or replacing base class
functions as needed)

	you could copy null.dist to QNX.dist, and deciding which items
to replace with QNX-specific functionality

	add DISTRIB=”QNX.dist” to your board file

	run the Functional.fuego_board_check test (using ftc, or adding
the node and job to Jenkins and building the job using the Jenkins
interface), and

	examine the console log to see what issues surface

Integration with ttc

This page describes how to use Fuego with ttc. ttc is a tool
used for manual and automated access to and manipulation of target
boards. It is a tool developed by Tim Bird and used at Sony for
managing their board farms, and for doing kernel development on multiple
different target boards at a time (including especially boards with
different processors and architectures.)

This page describes how ttc and Fuego are integrated, so that the
Fuego test framework can use ttc as it’s transport mechanism.

You can find more information about ttc on the embedded Linux wiki
at: http://elinux.org/Ttc_Program_Usage_Guide

Outline of supported functionality

Here is a rough outline of the support for ttc in Fuego:

	Integration for the tool and helper utilities in the container
build

	When the docker container is built, ttc is downloaded
from Github and installed into the Docker image.

	During this process, the path to the ttc.conf file is changed
from /etc/ttc.conf to /fuego-ro/conf/ttc.conf

	ttc is a valid transport option in Fuego

	You can specify ttc as the ‘transport’ for a board, instead of
ssh

	ttc added support for -r as an option to the ttc cp command

	This is required since Fuego uses -r extensively to do recursive
directory copies (See Transport_notes
for details)

	The Fuego core scripts have been modified to avoid using wildcards on
get operations

	A new test called Functional.fuego_transport has been added

	This tests use of wildcards, multiple files and directories and
directory recursion with the Fuego put function.

	It also indirectly tests the get function (the other major
Fuego transport function), because logs are obtained during the test.

Supported operations

ttc has several sub-commands. Fuego currently only uses the following
ttc sub-commands:

	ttc run - to run a command on the target

	ttc cp - to get a file from the target, and to put files to the
target

Note that some other commands, such as ttc reboot are not used, in
spite of there being similar functionality provided in fuego (see
function target reboot and function
ov rootfs reboot).

Finally, other commands, such as ttc get_kernel, ttc get_config,
ttc kbuild and ttc kinstall are not used currently. These may be
used in the future, when Fuego is expanded to have a focus on tests
that require kernel rebuilding.

Location of ttc.conf

Normally, ttc on a host uses the default configuration file at
/etc/ttc.conf. Fuego modifies the ttc installed inside the
Fuego docker container, so that it uses the configuration
file located at /fuego-ro/conf/ttc.conf as its default.

During Fuego installation, /etc/ttc.conf is copied to
/fuego-ro/conf from the host machine, if it is present (and a copy
of ttc.conf is not already there).

Steps to use ttc with a target board

Here is a list of steps to set up a target board to use ttc.
These steps assume you have already added a board to fuego
following the steps described in Adding a board.

	If needed, create your Docker container using docker-create-usb-
privileged-container.sh

	This may be needed if you are using ttc with board controls
that require access to USB devices (such as the Sony debug board)

	Use the --priv option with install.sh, as documented in
Installing Fuego.

	Make sure that fuego-ro/conf/ttc.conf has the definitions required
for your target board

	Validate this by doing ttc list to see that the board is
present, and ttc run and ttc cp commands, to test that these
operations work with the board, from inside the container.

	Edit the fuego board file (found in /fuego-ro/conf/boards
/{board_name}.board)

	Set the TRANSPORT to “ttc”

	Set the TTC_TARGET variable to the name for the target
used by ttc

	See the following example, for a definition for a target named
‘bbb’ (for my Beaglebone black board):

TRANSPORT=ttc
TTC_TARGET=bbb

modify your copy_to_cmd

In your ttc.conf file, you may need to make changes to the
copy_to_cmd definitions for boards used by Fuego. Fuego allows
programs to pass a -r argument to its internal put command,
which in turn invokes ttc’s cp command, with the source as
target and destination as the host. In other words, it ends up
invokings ttc’s copy_from_cmd for the indicated target.

All instances of copy_to_cmd should be modified to reference a new
environment variable $copy_args, and they should support the use
of -r in the command arguments.

Basically, if a Fuego test uses put -r at any point, this needs to
be supported by ttc. ttc will pass any ‘-r’ seen to the
subcommand in the environment variable $copy_args, where you can use
it as needed with whatever sub-command (cp, scp, or something
else) that you use to execute a copy_to_cmd.

See ttc.conf.sample and ttc.conf.sample2 for usage examples.

Working with remote boards

Here are some general tips for working with remote boards (that is,
boards in remote labs)

using a jump server

If you have an SSH jump server, then you can access machine directly
in another lab, using the SSH ProxyCommand in the host settings for a
board.

I found this page to be helpful:
https://www.tecmint.com/access-linux-server-using-a-jump-host/

You should try to make each leg of the jump (from local machine to
jump server, and from jump server to remote machine) password-less.

I found that if my local machine’s public key was in the remote
machine’s authorized keys file, then I could log in without a
password, even if the jump server’s public key was not in the remote
machine’s authorized keys file.

Using ttc transport remotely

If you have a server that already has ttc configured for a bunch of
board, you can accomplish a lot just by referencing ttc commands on
that server.

For example, in your local ttc.conf, you can put:

PASSWORD=foo
USER=myuser
SSH_ARGS=-o UserKnownHostsFile=/dev/null -o StrictHostKeychecking=no -o LogLevel=QUIET

pos_cmd=ssh timdesk ttc %(target)s pos
off_cmd=ssh timdesk ttc %(target)s off
on_cmd=ssh timdesk ttc %(target)s on
reboot_cmd=ssh timdesk ttc %(target)s reboot

login_cmd=sshpass -p %(PASSWORD)s ssh %(SSH_ARGS)s -x %(USER)s@%(target)s
run_cmd=sshpass -p %(PASSWORD)s ssh %(SSH_ARGS)s -x %(USER)s@%(target)s "$COMMAND"
copy_to_cmd=sshpass -p %(PASSWORD)s scp %(SSH_ARGS)s $src %(USER)s@%(target)s:/$dest
copy_from_cmd=sshpass -p %(PASSWORD)s scp %(SSH_ARGS)s %(USER)s@%(target)s:/$src $dest

Note

Note that ttc status <remote-board> command does not work
with ttc version 1.4.4. This is due to internal usage of
%(ip_addr)s in the function network_status(), which will not
be correct for the remote-board.

Setting up ssh ProxyCommand in the Fuego docker container

Please note that tests in Fuego are executed inside the Docker
container as user ‘jenkins’.

In order to set up password-less operation, or use of a jump server or
ProxyCommand, you have to add appropriate items (config and keys) to
/var/lib/jenkins/.ssh.

Please note that this may make your Docker container a security risk,
as it may expose your private keys to tests. Please use caution when
adding private keys or other sensitive security information to the
Docker container.

Building Documentation

As of July, 2020, the Fuego documentation is currently available in 3
places:

	The fuego-docs.pdf generated from TEX files in the fuego/docs/source
directory

	The Fuegotest wiki, located at:
https://fuegotest.org/wiki/Documentation

	A set of html files in fuego/docs/_build/html that are generated from
.rst files in fuego/docs/rst_src

The fuego-docs.pdf file is a legacy file that is several years old.
It is only kept around for backwards compatibility. It might be
worthwhile to scan it and see if any information is in it that is not
in the wiki and migrate it to the wiki.

The fuegotest wiki has the currently-maintained documentation for the
project. But there are several issues with this documentation:

	the wiki used is proprietary and slow

	the information is not well-organized

	the information is only available online, as separate pages

	there is no option to build a single PDF, or use the docs offline

	there is a mixture of information in the wiki

	not just documentation, but a crude issues tracker, random
technical notes testing information, release information and
other data that should not be part of official documentation

The .rst files are intended to be the future documentation source for
the project.

building the outdated PDF

To build the outdated PDF, cd to fuego/docs, and type

$ make fuego-docs.pdf

This will use latex to build the file fuego/docs/fuego-docs.pdf

building the RST docs

The RST docs can be build in several different formats, including
text, html, and pdf. You can type ‘make help’ to get a list of the
possible build targets for this documentation. Output is always
directed to a directory under fuego/docs/_build.

Here are some of the most popular targets:

html

$ make html

Documentation will be in fuego/docs/_build/html

The root of the documentation will be in index.html

singlehtml

$ make singlehtml

Documentation will be in fuego/docs/_build/singlehtml

The complete documentation will be in a single file: index.html (with
images and other static content in fuego/docs/_build/singlehtml/_static

latexpdf

$ make latexpdf

Documentation will be in fuego/docs/_build/latexpdf/Fuego.pdf

Fuego Developer Notes

This page has some detailed notes about Fuego, Jenkins and how they
interact.

Resources

Here are some pages in this wiki with developer information:

	Coding style

	Core_interfaces

	Glossary

	Fuego test results determination

	Fuego_naming_rules

	Fuego Object Details

	Integration with ttc

	Jenkins User interface

	Jenkins Plugins

	License And Contribution Policy

	Log files

	Metrics

	Overlay Generation

	ovgen feature notes

	Parser module API

	Test Script APIs

	Test package system

	Test server system

	Transport notes

	Variables

Notes

specific questions to answer

What happens when you click on the “run test” button:

	what processes start on the host

	java - jar /home/jenkins/slave.jar, executing a shell running
the contents of the job.xml “hudson.tasks.Shell/command” block:

	this block is labeled: “Execute shell: Command” in the “Build”
section of the job, in the configure page for the job in the
Jenkins user interface.

	what interface is used between the executing test (ultimately
a bash shell script) and the jenkins processes

	stop is performed by using the Jenkins REST API – by accessing “http://localhost:8090/…stop [http://localhost:8090/...stop]”

	see Fuego-Jenkins

Each Jenkins node is defined in Jenkins
in:/var/lib/jenkins/nodes/config.xml

	The name of the node is used as the “Device” and “NODE_NAME” for a
test.

	These environment variables are passed to the test agent, which is
always “java -jar /home/jenkins/slave.jar”

	Who calls ovgen.py? The core does, at the very start of main.sh
via the call to set_overlay_vars (which is in overlays.sh:w

Jenkins calls:

	java -jar /fuego-core/engine/slave.jar

	with variables:

	Device

	Reboot

	Rebuild

	Target_PreCleanup

	Target_PostCleanup

	TESTDIR

	TESTNAME

	TESTSPEC

	FUEGO_DEBUG

	the “Test Run” section of the Jenkins job for a test has a
shell script fragment with the following shell commands:

#logging areas=pre_test,pre_check,build,makepkg,deploy,snapshot,run,
post_test,processing, parser,criteria,charting
#logging levels=debug,verbose,info,warning,error
#export FUEGO_LOGLEVELS="run:debug,parser:verbose"
export FUEGO_CALLER="jenkins"
ftc run-test -b $NODE_NAME -t Functional.hello_world -s default \
 --timeout 6m \
 --reboot false \
 --rebuild false \
 --precleanup true \
 --postcleanup true

Some Jenkins notes:

Jenkins stores its configuration in plain files
under JENKINS_HOME You can edit the data in these files using the web
interface, or from the command line using manual editing (and have the
changes take affect at runtime by selecting “Reload configuration from
disk”.

By default, Jenkins assumes you are doing a continuous integration
action of “build the product, then test the product”. It has default
support for Java projects.

Fuego seems to use distributed builds (configured in a master/slave
fashion).

Jenkins home has (from 2007 docs):

	config.xml - has stuff for the main user interface

	*.xml

	fingerprints - directory for artifact fingerprints

	jobs

	<JOBNAME>

	config.xml

	workspace

	latest

	builds

	<ID>

	build.xml

	log

	changelog.xml

The docker container interfaces to the outside host filesystem via the
following links:

	/fuego-ro -> <host-fuego-location>/fuego-ro

	/fuego-rw -> <host-fuego-location>/fuego-rw

	/fuego-core -> <host-fuego-core-location>

What are all the fields in the “configure node” dialog:
Specifically:

	where is “Description” used? - don’t know

	what is “# of executors”? - don’t know for sure

	how is “Remote root directory” used?

	this is a path inside the Fuego container. I’m not sure what
Jenkins uses it for.

	what are Labels used for?

	as tags for grouping builds

	Launch method: Fuego uses the Jenkins option “Launch slave via
execution of command on the Master”
The command is “java -jar /fuego-core/engine/slave.jar”

	NOTE: slave.jar comes from jta-core git repository, under engine/slave.jar

The fuego-core directory structure is:

overlays - has the base classes for fuego functions
 base - has core shell functions
 testplans - has json files for parameter specifications (deprecated)
 distribs - has shell functions related to the distro
scripts - has fuego scripts and programs
 (things like overlays.sh, loggen.py, parser/common.py, ovgen.py, etc.
slave.jar - java program that Jenkins calls to execute a test
tests - has a directory for each test
 Benchmark.foo
 Benchmark.foo.spec
 foo.sh
 test.yaml
 reference.log
 parser.py
 Functional.bar
 LTP
 etc.

What is groovy:

	an interpreted language for Java, used by the scriptler plugin to
extend Jenkins

What plugins are installed with Jenkins in the JTA configuration?

	Jenkins Mailer, LDPA, External Monitor Job Type, PAM, Ant, Javadoc

	Jenkins Environment File (special)

	Credentials, SSH Credentials, Jenkins SSH Slags, SSH Agent

	Git Client, Subversion, Token Macro, Maven Integration, CVS

	Parameterized Trigger (special)

	Git, Groovy Label Assignment Extended Choie Parameter

	Rebuilder…

	Groovy Postbuild, ez-templates, HTML Publisher (special)

	JTA Benchmark show plot plugin (special)

	Log Parser Plugin (special)

	Dashboard view (special)

	Compact Columns (special)

	Jenkins Dynamic Parameter (special)

	flot (special) - benchmark graphs plotting plug-in for Fuego

Which of these did Cogent write?

	the flot plugin (not flot itself)

What scriptler scripts are included in JTA?

	getTargets

	getTestplans

	getTests

What language are scriptler scripts in?

	Groovy

What is the Maven plugin for Jenkins?

	Maven is an apache project to build and manage Java projects

	I don’t think the plugin is needed for Fuego

Jenkins refers to a “slave” - what does this mean?

	it refers to a sub-process that can be delegated work. Roughly
speaking, Fuego uses the term ‘target’ instead of ‘slave’, and
modifies the Jenkins interface to support this.

How the tests work

A simple test that requires no building is Functional.bc

	the test script and test program source are found in the
directory: /home/jenkins/tests/Functional.bc

This runs a shell script on target to test the ‘bc’ program.

Functional.bc has the files:

bc-script.sh
 declares "tarball=bc-script.tar.gz"
 defines shell functions:
 test_build - calls 'echo' (does nothing)
 test_deploy - calls 'put bc-device.sh'
 test_run - calls 'assert_define', 'report'
 report references bc-device.sh
 test_processing - calls 'log_compare'
 looking for "OK"
 sources $JTA_SCRIPTS_PATH/functional.sh
 bc-script.tar.gz
 bc-script/bc-device.sh

Variables used (in bc-script.sh):

BOARD_TESTDIR
TESTDIR
FUNCTIONAL_BC_EXPR
FUNCTIONAL_BC_RESULT

	A simple test that requires simple building:
	Functional.synctest

This test tries to call fsync to write data to a file, but is
interupted with a kill command during the fsync(). If the child dies
before the fsync() completes, it is considered success.

It requires shared memory (shmget, shmat) and semaphore IPC (semget
and semctl) support in the kernel.

Functional synctest has the files:

synctest.sh
 declares "tarball=synctest.tar.gz"
 defines shell functions:
 test_build - calls 'make'
 test_deploy - calls 'put'
 test_run - calls 'assert_define', hd_test_mount_prepare, and 'report'
 test_processing - calls 'log_compare'
 looking for "PASS : sync interrupted"
 sources $JTA_SCRIPTS_PATH/functional.sh
synctest.tar.gz
 synctest/synctest.c
 synctest/Makefile
synctest_p.log
 has "PASS : sync interrupted"

Variables used (by synctest.sh)

CFLAGS
LDFLAGS
CC
LD
BOARD_TESTDIR
TESTDIR
FUNCTIONAL_SYNCTEST_MOUNT_BLOCKDEV
FUNCTIONAL_SYNCTEST_MOUNT_POINT
FUNCTIONAL_SYNCTEST_LEN
FUNCTIONAL_SYNCTEST_LOOP

Note

could be improved by checking for CONFIG_SYSVIPC in /proc/config.gz
to verify that the required kernel features are present

MOUNT_BLOCKDEV and MOUNT_POINT are used by ‘hd_test_mount_prepare’ but
are prefaced with FUNCTIONAL_SYNCTEST or BENCHMARK_BONNIE

from clicking “Run Test”, to executing code on the target…
config.xml has the slave command: /home/jenkins/slave.jar
-> which is a link to /home/jenkins/jta/engine/slave.jar

overlays.sh has “run_python $OF_OVGEN …”
where OF_OVGEN is set to “$JTA_SCRIPTS_PATH/ovgen/ovgen.py”

	How is overlays.sh called?
	
	it is sourced by /home/jenkins/scripts/benchmarks.sh and
	/home/jenkins/scripts/functional.sh

functional.sh is sourced by each Funcational.foo script.

For Functional.synctest:

Functional.synctest/config.xml
 for the attribute <hudson.tasks.Shell> (in <builders>)
 <command>....
 souce $JTA_TESTS_PATH/$JOB_NAME/synctest.sh</command>

synctest.sh
 '. $JTA_SCRIPTS_PATH/functional.sh'
 'source $JTA_SCRIPTS_PATH/overlays.sh'
 'set_overlay_vars'
 (in overlays.sh)
 run_python $OF_OVGEN ($JTA_SCRIPTS_PATH/ovgen/ovgen.py) ...
 $OF_OUTPUT_FILE ($JTA_SCRIPTS_PATH/work/${NODE_NAME}_prolog.sh)
 generate xxx_prolog.sh
 SOURCE xxx_prolog.sh

 functions.sh pre_test()

 functions.sh build()
 ... test_build()

 functions.sh deploy()

 test_run()
 assert_define()
 functions.sh report()

NOTES about ovgen.py

What does this program do?

Here is a sample command line from a test console output:

python /home/jenkins/scripts/ovgen/ovgen.py \
 --classdir /home/jenkins/overlays//base \
 --ovfiles /home/jenkins/overlays//distribs/nologger.dist /home/jenkins/overlays//boards/bbb.board \
 --testplan /home/jenkins/overlays//testplans/testplan_default.json \
 --specdir /home/jenkins/overlays//test_specs/ \
 --output /home/jenkins/work/bbb_prolog.sh

So, ovgen.py takes a classdir, a list of ovfiles a testplan and a
specdir, and produces a xxx_prolog.sh file, which is then sourced by
the main test script

Here is information about ovgen.py source:

Classes:
 OFClass
 OFLayer
 TestSpecs

Functions:
 parseOFVars - parse Overlay Framework variables and definitions
 parseVars - parse variables definitions
 parseFunctionBodyName
 parseFunction
 baseParseFunction
 parseBaseFile
 parseBaseDir
 parseInherit
 parseInclude
 parseLayerVarOverride
 parseLayerFuncOverride
 parseLayerVarDefinition
 parseLayerCapList - look for BOARD.CAP_LIST
 parseOverrideFile
 generateProlog
 generateSpec
 parseGenTestPlan
 parseSpec
 parseSpecDir
 run

Sample generated test script

bbb_prolog.sh is 195 lines, and has the following vars and functions:

from class:base-distrib:
 ov_get_firmware()
 ov_rootfs_kill()
 ov_rootfs_drop_caches()
 ov_rootfs_oom()
 ov_rootfs_sync()
 ov_rootfs_reboot()
 ov_rootfs_state()
 ov_logger()
 ov_rootfs_logread()

from class:base-board:
 LTP_OPEN_POSIX_SUBTEST_COUNT_POS
 MMC_DEV
 SRV_IP
 SATA_DEV
 ...
 JTA_HOME
 IPADDR
 PLATFORM=""
 LOGIN
 PASSWORD
 TRANSPORT
 ov_transport_cmd()
 ov_transport_put()
 ov_transport_get()

from class:base-params:
 DEVICE
 PATH
 SSH
 SCP

from class:base-funcs:
 default_target_route_setup()

from testplan:default:
 BENCHMARK_DHRYSTONE_LOOPS
 BENCHMARK_<TESTNAME>_<VARNAME>
 ...
 FUNCTIONAL_<TESTNAME>_<VARNAME>

Logs

When a test is executed, several different kinds of logs are
generated: devlog, systemlogs, the testlogs, and the console log.

created by Jenkins

	console log

	this is located in /var/lib/jenkins/jobs/<test_name>/builds/<build_id>/log

	is has the output from running the test script (on the host)

created by ftc

	console log

	if ‘ftc’ was used to run the test, then the console log is
created in the log directory, which is:
/fuego-rw/logs/<test_name>/<board>.<spec>.<build_id>.<build_number>/

	it is called consolelog.txt

created by the test script

	these are created in the directory:
/fuego-rw/logs/<test_name>/<board>.<spec>.<build_id>.<build_number>/

	devlog has a list of commands run on the board during the test

	named devlog.txt

	system logs have the log data from the board (e.g.
/var/log/messages) before and after the test run:

	named: syslog.before.txt and syslog.after.txt

	the test logs have the actual output from the test program on the target

	this is completely dependent on what the test program outputs

	named: testlog.txt

	this is the ‘raw’ log

	there may be ‘parsed’ logs, which is the log filtered by log_compare operations:

	this is named: testlog.p.txt or testlog.n.txt

	the ‘p’ indicated positive results and the ‘n’ indicates negative results

Core scripts

The test script is sourced by the Fuego main.sh script

This script sources several other scripts, and ends up including
fuego_test.sh

	load overlays and set_overlay vars

	pre_test $TEST_DIR

	build

	deploy

	test_run

	set_testres_file, bench_processing, check_create_logrun (if a benchmark)

	get_testlog $TESTDIR, test_processing (if a functional test)

	get_testlog $TESTDIR (if a stress test)

	test_processing (if a regular test)

functions available to test scripts:
See Test Script APIs

Benchmark tests must provide a parser.py file, which extracts the
benchmark results from the log data.

It does this by doing the following:

import common as plib
f = open(plib.TEST_LOG)
lines = f.readlines()
((parse the data))

This creates a dictionary with a key and value, where the key matches
the string in the reference.log file

The parser.py program builds a dictionary of values by parsing
the log from the test (basically the test output).
It then sends the dictionary, and the pattern for matching the
reference log test criteria to the routine:
common.py:process_data()

It defines ref_section_pat, and passes that to process_data()
Here are the different patterns for ref_section_pat:

9 "\[[\w]+.[gle]{2}\]"
1 "\[\w*.[gle]{2}\]"
1 "^\[[\d\w_ .]+.[gle]{2}\]"
1 "^\[[\d\w_.-]+.[gle]{2}\]"
1 "^\[[\w\d&._/()]+.[gle]{2}\]"
4 "^\[[\w\d._]+.[gle]{2}\]"
2 "^\[[\w\d\s_.-]+.[gle]{2}\]"
3 "^\[[\w\d_ ./]+.[gle]{2}\]"
5 "^\[[\w\d_ .]+.[gle]{2}\]"
1 "^\[[\w\d_\- .]+.[gle]{2}\]"
1 "^\[[\w]+.[gle]{2}\]"
1 "^\[[\w_ .]+.[gle]{2}\]"

Why are so many different ones needed??
Why couldn’t the syntax be: <var-name> <test> <value> on one line?

It turns out this is processed by an ‘awk’ script. thus the weird
syntax. We should get rid of the awk script and use python instead.

How is benchmarking graphing done?

See Benchmark parser note

docker tips

See docker tips

License And Contribution Policy

License

Fuego has the following license policy.

Fuego consists of several parts, and includes source code from a
number of different external test projects.

Default license

The default license for Fuego is the BSD 3-Clause license, as
indicated in the LICENSE file at the top of the ‘fuego’ and
‘fuego-core’ source repositories.

If a file does not have an explicit license, or license indicator
(such as SPDX identifier) in the file, than that file is covered by
the default license for the project, with the exceptions noted below
for “external test materials”.

When making contributions, if you do NOT indicate an alternative
license for your contribution, the contribution will be assigned the
license of the file to which the contribution applies (which may be
the default license, if the file contains no existing license
indicator).

Although we may allow for other licenses within the Fuego project
in order to accommodate external software added to our system, our
preference is to avoid the proliferation of licenses in the Fuego
code itself.

External test materials

Individual tests in Fuego consist of files in the directory:
engine/tests/<test_name> (which is known as the test home directory),
and may include two types of materials:

	Fuego-specific files

	files obtained from external sources, which have their own
license.

The Fuego-specific materials consist of files such as:
fuego_test.sh, spec.json, criteria.json, test.yaml,
chart_config.json, and possibly others as created for use in the
Fuego project. External test materials may consist of tar files, helper
scripts and patches against the source in the tar files.

Unless otherwise indicated, the Fuego-specific materials are
licensed under the Fuego default license, and the external test
materials are licensed under their own individual project
license - as indicated in the test source.

In some cases, there is no external source code, but only source that
is originally written for Fuego and stored in the test home directory.
This commonly includes tests based on a single shell script, that is
written to be deployed to the Device Under Test by fuego_test.sh.
Unless otherwise indicated, these files (source and scripts) are
licensed under the Fuego default license.

If there is any ambiguity in the category of a particular file
(external or Fuego-specific), please designate the intended license
clearly in the file itself, when making a contribution.

Copyright statements

Copyrights for individual contributions should be added to individual
files, when the contributions warrant copyright assignment. Some
trivial fixes to existing code may not need to have copyright
assignment, and thus not every change to a file needs to include a
copyright notice for the contributor.

License tags

Our preference is to use SPDX license identifier, rather than a
license notice, to indicate the license of any materials in Fuego.
Such identifiers and notices are only desired if the materials are not
contributed under the default Fuego license of “BSD-3-Clause”.

In a test.yaml, please indicate the license of the upstream
test program. If there is no upstream test program (ie, the
test is self-contained), please specify the license of the Fuego
test definition itself.

Please see https://spdx.org/licenses/ for a list of SPDX license
tags

Contributor agreement

The Fuego project does not require a signed Contributor License
Agreement for contribution to the project. Instead, we utilize
the following Developer Certificate of Origin that was copied
from the Linux kernel.

Each contribution to Fuego must be accompanied by a
Signed-off-by line in the patch or commit description, which
indicates agreement to the following:

By making a contribution to this project, I certify that:

 (a) The contribution was created in whole or in part by me and I
 have the right to submit it under the open source license
 indicated in the file; or

 (b) The contribution is based upon previous work that, to the best
 of my knowledge, is covered under an appropriate open source
 license and I have the right under that license to submit that
 work with modifications, whether created in whole or in part
 by me, under the same open source license (unless I am
 permitted to submit under a different license), as indicated
 in the file; or

 (c) The contribution was provided directly to me by some other
 person who certified (a), (b) or (c) and I have not modified
 it.

 (d) I understand and agree that this project and the contribution
 are public and that a record of the contribution (including all
 personal information I submit with it, including my sign-off) is
 maintained indefinitely and may be redistributed consistent with
 this project or the open source license(s) involved.

Note

Please note that an “official” DCO at the web site
https://developercertificate.org/ has additional text
(an LF copyright, address, and statement of non-copyability).
All of these extra items are either nonsense or problematical
in some legal sense. The above is a quote of a portion of the
document found in the Linux kernel guide for submitting patches.
See
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/process/submitting-patches.rst
(copied in March, 2018).

Each commit must include a DCO which looks like this

Signed-off-by: Joe Smith <joe.smith@email.com>

The project requires that the name used is your real name. Neither
anonymous contributors nor those utilizing pseudonyms will be accepted.

You may type this line on your own when writing your commit messages.
However, Git makes it easy to add this line to your commit messages.
Make sure the user.name and user.email are set in your git configs.
Use ‘-s’ or ‘–signoff’
options to ‘git commit’ to add the Signed-off-by line to the end of
the commit message.

Submitting contributions

Please format contributions as a patch, and send the patch to the
Fuego mailing list [https://lists.linuxfoundation.org/mailman/listinfo/fuego]

Before making the patch, please verify that you have followed our
preferred Coding style.

We follow the style of patches used by the Linux kernel, which is
described here: https://www.kernel.org/doc/html/latest/process/submitting-patches.html

Not everything described there applies, but please do the following:

	Use a Signed-off-by line

	Send patch in plain text

	Include PATCH in the subject line

	Number patches in a series (1/n, 2/n, .. n/n)

	Use a subsystem prefix on the patch subject line

	Patch subject should have: “subsystem: description”

	In the case of modifications to a test, the subject should have:
“test: description” (that is, the test is the subsystem name)

	The test name can be the short name, if it is unambiguous

	That is, please don’t use the ‘Functional’ or ‘Benchmark’
prefix unless there are both types of tests with the same
short name

	Describe your changes in the commit message body

Creating patches

If you use git, it’s easy to create a patch (or patch series),
using git format-patch. Or, you can go directly to e-mailing
a patch or patch series using git send-email.

Alternative submission method

I also allow patches as attachments to an e-mail to the list.
This is something NOT supported by the Linux kernel community.

If the patch is too big (greater than 300K), then please add it
to a public git repository, and let me know the URL for the
repository. I can add a remote for the repo, and fetch it and
cherry pick the patch. I prefer doing a fetch and cherry-pick
to a pull request.

While I will sometimes process patches through a repo, it is
strongly preferred for patches to go through the mailing list
as plain text, so that community members can review the patch
in public.

Core interfaces

This page documents the interface between the Jenkins front end and
the Fuego core engine. See also Variables

From Jenkins to Fuego

Environment variables passed during a build

Built-in Jenkins variables for shell script jobs

	BUILD_ID
	The current test run id. As of (at least) Jenkins
version 2.32.1, this is the same as the BUILD_NUMBER.

	BUILD_NUMBER
	The current test run number, such as “153”.
This appears to be selected as the next numerical number in
sequence,by the Jenkins system, at the start of a job.

	BUILD_TAG
	String of “jenkins-${JOB_NAME}-${BUILD_NUMBER}”.
Convenient to put into a resource file, a jar file, etc for
easier identification.

	BUILD_URL
	Full URL of this test run, like
http://server:port/jenkins/job/foo/15/

	EXECUTOR_NUMBER
	The unique number that identifies the current
executor (among executors of the same machine) that’s carrying out
this test run. This is the number you see in the “test executor status”,
except that the number starts from 0, not 1.

	JENKINS_HOME
	The absolute path of the directory assigned on the
master node for Jenkins to store data.

	JENKINS_URL
	Full URL of Jenkins, like http://server:port/jenkins/

	JOB_NAME
	Name of Jenkins job for this test.
In Fuego, this will be something like: “myboard.default.Functional.foo”
or “myboard.default.Benchmark.bar”. The job name has the form:
{board}.{spec}.{type}.{test_name}

	JOB_URL
	Full URL of this test or test suite, like
http://server:port/jenkins/job/myboard.default.Functional.foo/

	NODE_LABELS
	Whitespace-separated list of labels that are assigned to the node.

	NODE_NAME
	Name of the slave if the test run is on a slave, or
“master” if run on master. In the case of Fuego, this is the board
name (e.g. ‘beagleboneblack’)

	WORKSPACE
	The absolute path of the directory assigned to the test
run as a workspace. For Fuego, this is always /fuego-rw/buildzone.
Note that this comes from “custom workspace” setting in the job definition.

Fuego variables passed from Jenkins system configuration

The following variables are defined at the system level, and are passed
by Jenkins in the environment of every job that is executed:

	FUEGO_RO
	The location where Fuego read-only data (configuration,
boards and toolchains) are located. Currently /fuego-ro in the
docker container.

	FUEGO_RW
	The location where Fuego read-write data is located
(directories for builds, logs (run data), and other workspace and
scratchpad areas). Currently /fuego-rw.

	FUEGO_CORE
	The location where the Fuego script system and tests
are located. Currently /fuego-core.

Fuego variables passed from Jenkins job definition

These variables are defined in the job definition for a test:

	Device
	This is the target board to run the test on.

	Reboot
	Indicates to reboot the target device before running the test

	Rebuild
	Indicates that build instances of the test suite should
be deleted, and the test suite rebuilt from the tarball

	Target_PreCleanup
	Indicates to clean up test materials left from
a previous run of the test, before the test begins.

	Target_PostCleanup
	Indicates to clean up test materials after the
test ends.

	TESTPLAN
	This has the name of the testplan used for this test job.
Note that this selected by the end user from the output of
getTestplans.groovy. (example value: testplan_default)

	TESTNAME
	Has the base name of the test (e.g. LTP vs Functional.LTP)

	TESTSPEC
	This has the name of the spec used for this test job

	FUEGO_DEBUG
	Can have a 1 to indicate verbose shell script output

From Fuego to Fuego

	DISTRIB
	Indicates the distribution file for the board.
This comes from the board file. It’s primary purpose is to select the
logging features of the distribution on the target (to indicate whether
there’s a logger present on target). The value is often
‘distribs/nologread.dist’

	OF_BOARD_FILE
	Full path to the board file

	OF_CLASSDIR
	full path to the overlay class directory
(usually /home/jenkins/overlays//base)

	OF_CLASSDIR_ARGS
	argument specifying the overlay class directory
(usually ‘–classdir /home/jenkins/overlays//base’)

	OF_DEFAULT_SPECDIR
	path to directory containing test specs
(usually /home/jenkins/overlays//test_specs)

	OF_DISTRIB_FILE
	path to the distribution file for the target
board (often /home/jenkins/overlays//distribs/nologger.dist

	OF_OVFILES
	FIXTHIS - document what OF_OVFILES is for

	OF_OVFILES_ARGS
	FIXTHIS - document what OF_OVFILES_ARGS is for

	OF_ROOT
	root directory for overlay generator
(usually /home/jenkins/overlays/)

	OF_SPECDIR_ARGS
	argument to specify the test spec directory
(usually ‘–specdir /home/jenkins/overlays//test_specs/’)

OF_TESTPLAN_ARGS

	OF_TESTPLAN
	full path to the JSON test plan file for this test
(often /home/jenkins/overlays//testplans/testplan_default.json)

	OF_TESTPLAN_ARGS
	argument specifying the path to the testplan
(often ‘–testplan /home/jenkins/overlays//testplans/testplan_default.json’)

	TEST_HOME
	home directory for the test materials for this test
(example: /home/jenkins/tests/Functional.bc)

	TESTDIR
	base directory name of the test (example: Functional.bc)

	TRIPLET
	FIXTHIS - document TRIPLET

Deprecated

The following variables are no longer used in Fuego:

	FUEGO_ENGINE_PATH
	(deprecated in Fuego 1.1 - use ‘$FUEGO_CORE/engine’ now)

	FUEGO_PARSER_PATH
	(deprecated in Fuego 1.1)

Example Values

Here are the values from a run using the Jenkins front-end with job
bbb.default.Functional.hello_world:

(these are sorted alphabetically):

AR=arm-linux-gnueabihf-ar
ARCH=arm
AS=arm-linux-gnueabihf-as
BUILD_DISPLAY_NAME=#2
BUILD_ID=2
BUILD_NUMBER=2
BUILD_TAG=jenkins-bbb.default.Functional.hello_world-2
BUILD_TIMESTAMP=2017-04-10_21-55-26
CC=arm-linux-gnueabihf-gcc
CONFIGURE_FLAGS=--target=arm-linux-gnueabihf --host=arm-linux-gnueabihf --build=x86_64-unknown-linux-gnu
CPP=arm-linux-gnueabihf-gcc -E
CROSS_COMPILE=arm-linux-gnueabihf-
CXX=arm-linux-gnueabihf-g++
CXXCPP=arm-linux-gnueabihf-g++ -E
EXECUTOR_NUMBER=0
FUEGO_CORE=/fuego-core
FUEGO_RO=/fuego-ro
FUEGO_RW=/fuego-rw
FUEGO_START_TIME=1491861326786
HOME=/var/lib/jenkins
HOST=arm-linux-gnueabihf
HUDSON_COOKIE=1b9620a3-d550-4cb1-afb1-9c5a29650c14
HUDSON_HOME=/var/lib/jenkins
HUDSON_SERVER_COOKIE=2334aa4d37eae7a4
JENKINS_HOME=/var/lib/jenkins
JENKINS_SERVER_COOKIE=2334aa4d37eae7a4
JOB_BASE_NAME=bbb.default.Functional.hello_world
JOB_DISPLAY_URL=http://unconfigured-jenkins-location/job/bbb.default.Functional.hello_world/display/redirect
JOB_NAME=bbb.default.Functional.hello_world
LD=arm-linux-gnueabihf-ld
LDFLAGS=--sysroot / -lm
LOGDIR=/fuego-rw/logs/Functional.hello_world/bbb.default.2.2
LOGNAME=jenkins
MAIL=/var/mail/jenkins
NODE_LABELS=bbb
NODE_NAME=bbb
PATH=/usr/local/bin:/usr/local/bin:/usr/bin:/bin:/usr/local/games:/usr/games
PREFIX=arm-linux-gnueabihf
PWD=/fuego-rw/buildzone
RANLIB=arm-linux-gnueabihf-ranlib
Reboot=false
Rebuild=true
RUN_CHANGES_DISPLAY_URL=http://unconfigured-jenkins-location/job/bbb.default.Functional.hello_world/2/display/redirect?page=changes
RUN_DISPLAY_URL=http://unconfigured-jenkins-location/job/bbb.default.Functional.hello_world/2/display/redirect
SDKROOT=/
SHELL=/bin/bash
SHLVL=3
Target_PostCleanup=true
Target_PreCleanup=true
TERM=xterm
TESTDIR=Functional.hello_world
TESTNAME=hello_world
TESTSPEC=default
USER=jenkins
WORKSPACE=/fuego-rw/buildzone

From Fuego to Jenkins

This sections describes some of the operations that Fuego core
scripts (or a test) can perform to invoke an action by Jenkins
during a test. To perform a Jenkins action, Fuego uses
Jenkins’ REST API using the wget command.

	To abort a job, fuego does:

	wget -qO- ${BUILD_URL}/stop

	This is called by common.sh: abort_job()

	To check if another test instance is running (do a lock check),
fuego does:

	wget -qO- “$(cat ${LOCKFILE})/api/xml?xpath=*/building/text%28%29”

	LOCKFILE was previously set to hold the contents: ${BUILD_URL},
so this resolves to:

	wget -qO- ${BUILD_URL}/api/xml?xpath=*/building/text()

	This is called by functions.sh:concurrent_check()

Jenkins python module

Fuego’s ftc command uses the ‘jenkins’ python module to perform a
number of operations with Jenkins. This module is used to:

	list nodes

	add nodes

	remove nodes

	list jobs

	build jobs

	remove jobs

	re-synch build data for a job (using get_job_config() and reconfig_job())

	add view

Note

Fuego uses jenkins-cli to add jobs (described next).

Jenkins-cli interface

You can run Jenkins commands from the command line, using the
pre-installed jenkins-cli interface. This is used by Fuego’s
ftc command to create jobs.

jenkins-cli.jar is located in the Docker container at:

/var/cache/jenkins/war/WEB-INF/jenkins-cli.jar

See https://wiki.jenkins-ci.org/display/JENKINS/Jenkins+CLI for
information about using this plugin.

Here is a list of available commands for this plugin:

build
 Runs a test, and optionally waits until its completion.
cancel-quiet-down
 Cancel the effect of the "quiet-down" command.
clear-queue
 Clears the test run queue
connect-node
 Reconnect to a node
console
 Retrieves console output of a build
copy-job
 Copies a test.
create-job
 Creates a new test by reading stdin as a configuration XML file.
delete-builds
 Deletes test record(s).
delete-job
 Deletes a test
delete-node
 Deletes a node
disable-job
 Disables a test
disconnect-node
 Disconnects from a node
enable-job
 Enables a test
get-job
 Dumps the test definition XML to stdout
groovy
 Executes the specified Groovy script.
groovysh
 Runs an interactive groovy shell.
help
 Lists all the available commands.
install-plugin
 Installs a plugin either from a file, an URL, or from update center.
install-tool
 Performs automatic tool installation, and print its location to
 stdout. Can be only called from inside a test run.
keep-build
 Mark the test run to keep the test run forever.
list-changes
 Dumps the changelog for the specified test(s).
list-jobs
 Lists all tests in a specific view or item group.
list-plugins
 Outputs a list of installed plugins.
login
 Saves the current credential to allow future commands to run
 without explicit credential information.
logout
 Deletes the credential stored with the login command.
mail
 Reads stdin and sends that out as an e-mail.
offline-node
 Stop using a node for performing test runs temporarily, until the
 next "online-node" command.
online-node
 Resume using a node for performing test runs, to cancel out the
 earlier "offline-node" command.
quiet-down
 Quiet down Jenkins, in preparation for a restart. Don't start
 any test runs.
reload-configuration
 Discard all the loaded data in memory and reload everything from
 file system. Useful when you modified config files directly on disk.
restart
 Restart Jenkins
safe-restart
 Safely restart Jenkins
safe-shutdown
 Puts Jenkins into the quiet mode, wait for existing test runs to
 be completed, and then shut down Jenkins.
session-id
 Outputs the session ID, which changes every time Jenkins restarts
set-build-description
 Sets the description of a test run.
set-build-display-name
 Sets the displayName of a test run
set-build-result
 Sets the result of the current test run. Works only if invoked
 from within a test run.
shutdown
 Immediately shuts down Jenkins server
update-job
 Updates the test definition XML from stdin.
 The opposite of the get-job command
version
 Outputs the current version.
wait-node-offline
 Wait for a node to become offline
wait-node-online
 Wait for a node to become online
who-am-i
 Reports your credential and permissions

Scripts to process Fuego data

Benchmark parsing

In Fuego, Benchmark log parsing is done by a python system consisting
of parser.py (from each test), dataload.py and utility functions in
fuego-core/engine/scripts/parser

See Benchmark parser notes,
parser.py, reference.log and
Parser module API.

Postbuild action

In Fuego, Jenkins jobs are configured to perfrom a postbuild action,
to set the description of a test with links to the test log
(and possibly plot and other files generated in post-processing)

Adding a new test

Overview of Steps

To add a new test to Fuego, you need to perform the following steps:

	
	Decide on a test name and type

	
	Make the test directory

	
	Get the source (or binary) for the test

	
	Write a test script for the test

	
	Add the test_specs (if any) for the test

	
	Add log processing to the test

	6-a. (if a benchmark) Add parser.py and criteria and reference
files

	
	Create the Jenkins test configuration for the test

Decide on a test name

The first step to creating a test is deciding the test name. There
are two types of tests supported by Fuego: functional tests and
benchmark tests. A functional test either passes or fails, while a
benchmark test produces one or more numbers representing some
performance measurements for the system.

Usually, the name of the test will be a combination of the test type
and a name to identify the test itself. Here are some examples:
bonnie is a popular disk performance test. The name of this test in
the fuego system is Benchmark.bonnie. A test which runs portions of
the posix test suite is a functional test (it either passes or fails),
and in Fuego is named Functional.posixtestsuite. The test name
should be all one word (no spaces).

This name is used as the directory name where the test materials will
live in the Fuego system.

Create the directory for the test

The main test directory is located in
/fuego-core/engine/tests/<test_name>

So if you just created a new Functional test called ‘foo’, you would
create the directory:

	/fuego-core/engine/tests/Functional.foo

Get the source for a test

The actual creation of the test program itself is outside
the scope of Fuego. Fuego is intended to execute an existing
test program, for which source code or a script already exists.

This page describes how to integrate such a test program into the
Fuego test system.

A test program in Fuego is provided in source form so that it can
be compiled for whatever processor architecture is used by the
target under test. This source may be in the form of a tarfile,
or a reference to a git repository, and one or more patches.

Create a tarfile for the test, by downloading the test source
manually, and creating the tarfile. Or, note the reference for the
git repository for the test source.

tarball source

If you are using source in the form of a tarfile, you add the name of
the tarfile (called ‘tarball’) to the test script.

The tarfile may be compressed. Supported compression schemes, and
their associated extensions are:

	uncompressed (extension=’.tar’)

	compressed with gzip (extension=’.tar.gz’ or ‘.tgz’)

	compressed with bzip2 (extension=’.bz2’)

For example, if the source for your test was in the tarfile
‘foo-1.2.tgz’ you would add the following line to your test script, to
reference this source:

tarball=foo-1.2.tgz

git source

If you are using source from an online git repository, you reference
this source by adding the variables ‘gitrepo’ and ‘gitref’ to the test
script.

In this case, the ‘gitrepo’ is the URL used to access the source, and
the ‘gitref’ refers to a commit id (hash, tag, version, etc.) that
refers to a particular version of the code.

For example, if your test program is built from source in an online
‘foo’ repository, and you want to use version 1.2 of that (which is
tagged in the repository as ‘v1.2’, on the master branch, you might
have some lines like the following in the test’s script.

gitrepo=http://github.com/sampleuser/foo.git
gitref=master/v1.2

script-based source

Some tests are simple enough to be implemented as a single script
(that runs on the board). For these tests, no additional source is
necessary, and the script can just be placed directly in the test’s
home directory. In fuego_test.sh you must set the following
variable:

local_source=1

During the deploy phase, the script is sent to the board directly from
the test home directory instead of from the test build directory.

Test script

The test script is a small shell script called fuego_test.sh. It
specifies the source tarfile containing the test program, and provides
implementations for the functions needed to build, deploy, execute,
and evaluate the results from the test program.

The test script for a functional test should contain the following:

	source reference (either tarball or gitrepo and gitref)

	function test_pre_check (optional)

	function test_build

	function test_deploy

	function test_run

	function test_processing

The test_pre_check function is optional, and is used to check that
the test environment and target configuration and setup are correct
in order to run the test.

Sample test script

Here is the fuego_test.sh script for the test
Functional.hello_world. This script demonstrates a lot of the core
elements of a test script.:

#!/bin/bash

tarball=hello-test-1.0.tgz

function test_build {
 make
}

function test_deploy {
 put hello $BOARD_TESTDIR/fuego.$TESTDIR/
}

function test_run {
 report "cd $BOARD_TESTDIR/fuego.$TESTDIR; \
 ./hello $FUNCTIONAL_HELLO_WORLD_ARG"
}

function test_processing {
 log_compare "$TESTDIR" "1" "SUCCESS" "p"
}

Description of base test functions

The base test functions (test_build, test_deploy, test_run, and
test_processing) are fairly simple. Each one contains a few
statements to accomplish that phase of the test execution.

You can find more information about each of these functions at the
following links:

	test_pre_check

	test_build

	test_deploy

	test_run

	test_processing

Test spec and plan

Another element of every test is the test spec. A file is used
to define a set of parameters that are used to customize the test
for a particular use case.

You must define the test spec(s) for this test, and add an entry to
the appropriate testplan for it.

Each test in the system must have a test spec file. This file
is used to list customizable variables for the test.

If a test program has no customizable variables, or none are desired,
then at a minimum a default test spec must be defined, with no test
variables.

The test spec file is:

	named ‘spec.json’ in the test directory,

	in JSON format,

	provides a testName attribute, and a specs
attribute, which is a list,

	may include any named spec you want, but must define at least the
‘default’ spec for the test

	Note that the ‘default’ spec can be empty, if desired.

Here is an example one that defines no variables.

{
 "testName": "Benchmark.OpenSSL",
 "specs": {
 "default": {}
 }
}

And here is the spec.json of the Functional.hello_world example, which
defines three specs:

{
 "testName": "Functional.hello_world",
 "specs": {
 "hello-fail": {
 "ARG":"-f"
 },
 "hello-random": {
 "ARG":"-r"
 },
 "default": {
 "ARG":""
 }
 }
}

Next, you may want to add an entry to one of the testplan files.
These files are located in the directory
/fuego-core/engine/overlays/testplans.

Choose a testplan you would like to include this test, and edit the
corresponding file. For example, to add your test to the list of tests
executed when the ‘default’ testplan is used, add an entry default
to the ‘testplan_default.json’ file.

Note that you should add a comma after your entry, if it is not the
last one in the list of tests.

Please read Test Specs and Plans for
more details.

Test results parser

Each test should also provide some mechanism to parse the results
from the test program, and determine the success of the test.

For a simple Functional test, you can use the log_compare function to specify a pattern to search for in the
test log, and the number of times that pattern should be found in
order to indicate success of the test. This is done from the
test_processing function in the test
script.

Here is an example of a call to log_compare:

function test_processing {
 log_compare "$TESTDIR" "11" "^TEST.*OK" "p"
}

This example looks for the pattern ^TEST.*OK, which finds lines in
the test log that start with the word ‘TEST’ and are followed by the
string ‘OK’ on the same line. It looks for this pattern 11 times.

log_compare can be used to parse the logs of
simple tests with line-oriented output.

For tests with more complex output, and for Benchmark tests that
produce numerical results, you must add a python program called
‘parser.py’, which scans the test log and produces a data structure
used by other parts of the Fuego system.

See parser.py for information about this program.

Pass criteria and reference info

You should also provide information to Fuego to indicate how to
evaluate the ultimate resolution of the test.

For a Functional test, it is usually the case that the whole test
passes only if all individual test cases in the test pass. That is,
one error in a test case indicates overall test failure. However, for
Benchmark tests, the evaluation of the results is more complicated.
It is required to specify what numbers constitute success vs. failure
for the test.

Also, for very complicated Functional tests, there may be complicated
results, where, for example, some results should be ignored.

You can specify the criteria used to evaluate the test results, by
creating a ‘criteria.json’ file for the test.

Finally, you may wish to add a file that indicates certain information
about the test results. This information is placed in the
‘reference.json’ file for a test.

Please see the links for those files to learn more about what they are
and how to write them, and customize them for your system.

Jenkins job definition file

The last step in creating the test is to create the Jenkins job for
it.

A Jenkins job describes to Jenkins what board to run the test on, what
variables to pass to the test (including the test spec (or variant),
and what script to run for the test.

Jenkins jobs are created using the command-line tool ‘ftc’.

A Jenkin job has the name <node_name>.<spec>.<test_type>.<test_name>

You create a Jenkins job using a command like the following:

	$ ftc add-jobs -b myboard -t Functional.mytest [-s default]

The ftc ‘add-jobs’ sub-command uses ‘-b’ to specify the board,
‘-t’ to specify the test, and ‘-s’ to specify the test spec that
will be used for this Jenkins job.

In this case, the name of the Jenkins job that would be created would
be:

	myboard.default.Functional.mytest

This results in the creation of a file called config.xml, in the
/var/lib/jenkins/jobs/<job_name> directory.

Publishing the test

Tests that are of general interest should be
submitted for inclusion into fuego-core.

Right now, the method of doing this is to create a commit and send
that commit to the fuego mailing list, for review, and hopefully
acceptance and integration by the fuego maintainers.

In the future, a server will be provided where test developers can
share tests that they have created in a kind of “test marketplace”.
Tests will be available for browsing and downloading, with results
from other developers available to compare with your own results.
There is already preliminary support for packaging a test using the
‘ftc package-test’ feature. More information about this service will
be made available in the future.

Technical Details

This section has technical details about a test.

Directory structure

The directory structure used by Fuego is documented at
[[Fuego directories]]

Files

A test consists of the following files or items:

	File or item

	format

	location

	description

	test type

	config.xml

	Jenkins XML

	/var/lib/jenkins/jobs/{test_name}

	Has the Jenkins (front-end) configuration for the test

	all

	tarfile

	tar format

	/fuego-core/engine/tests/{test_name}

	Has the source code for the test program

	all

	patches

	patch format

	/fuego-core/engine/tests/{test_name}

	Zero or more patches to customize the test program (applied during the unpack
phase

	all

	base script

	shell script

	/fuego-core/engine/tests/{test_name}
/fuego_test.sh

	Is the shell script that implements the different test phases in Fuego

	all

	test spec

	JSON

	/fuego-core/engine/tests/{test_name}
/spec.json

	Has groups of variables (and their values) that can be used with this test

	all

	test plan(s)

	JSON

	/fuego-core/engine/overlays/testplan

	Has the testplans for the entire system

	all

	parser.py

	python

	/fuego-core/engine/tests/{test_name}

	Python program to parse benchmark metrics out of the log, and provide a
dictionary to the Fuego plotter all,

	all
but
can be
missing
for
functi-
onal
tests

	pass criteria

	JSON

	/fuego-core/engine/tests/{test_name}
/criteria.json

	Has the “pass” criteria for the test

	all

	reference info

	JSON

	/fuego-core/engine/tests/{test_name}
/reference.json

	Has additional information about test results,such
as the units for benchmark measurements

	bench-
mark only

	reference.log

	Fuego-
specific

	/fuego-core/engine/tests/{test_name}

	Has the threshold values and comparison operators for
benchmark metrics measured by the test

	bench-
mark
only

	(deprecated)

	p/n logstext

	/fuego-core/engine/tests/{test_name}

	Are logs with the results (positive or negative) parsed out,
for determination of test pass/fail

	func-
tional
only

Using Batch Tests

A “batch test” in Fuego is a Fuego test that runs a series of other
tests as a group. The results of the individual tests are
consolidated into a list of testcase results for the batch test.

Prior to Fuego version 1.5, there was a different feature, called
“testplans”, which allowed users to compose sets of tests into logical
groups, and run them together. The batch test system, introduced in
Fuego version 1.5 replaces the testplan system.

How to make a batch test

A batch test consists of a Fuego test that runs other tests. A Fuego
batch test is similar to other Fuego tests, in that the test definition
lives in fuego-core/tests/<test-name>, and it consists of a
fuego_test.sh file, a spec file, a parser.py, a test.yaml
file and possibly other files.

The difference is that a Fuego batch test runs other Fuego tests, as a
group. The batch test has a few elements that are different from
other tests.

Inside the fuego_test.sh file, a batch test must define two main
elements:

	The testplan element

	The test_run function, with commands to run other tests

Testplan element

The testplan element consists of data assigned to the shell variable
BATCH_TESTPLAN. This variable contains lines that specify, in
machine-readable form, the tests that are part of the batch job. The
testplan is specified in json format, and is used to specify the
attributes (such as timeout, flags, and specs) for each test. The
testplan element is used by ftc add-jobs to create Jenkins jobs for
each sub-test that is executed by this batch test.

The BATCH_TESTPLAN variable must be defined in the fuego_test.sh file.
The definition must begin with a line starting with the string
‘BATCH_TESTPLAN=’ and end with a line starting with the string
‘END_TESTPLAN’. By convention this is defined as a shell “here
document”, like this example:

BATCH_TESTPLAN=$(cat <<END_TESTPLAN
{
 "testPlanName": "foo_plan",
 "tests": [
 { "testName": "Functional.foo" },
 { "testName": "Functional.bar" }
 }
}
END_TESTPLAN
)

The lines of the testplan follow the format described at
Testplan_Reference. Please see that page
for details about the plan fields and structure (the schema for the
testplan data).

test_run function

The other element in a batch test’s fuego_test.sh is a test_run
function. This function is used to actually execute the tests in the
batch.

There are two functions that are available to help with this:

	allocate_next_batch_id

	run_test

The body of the test_run function for a batch test usually has a few
common elements:

	setting of the FUEGO_BATCH_ID

	execution of the sub-tests, using a call to the function
run_test for each one

Here are the commands in the test_run function for the test
Functional.batch_hello:

function test_run {
 export TC_NUM=1
 DEFAULT_TIMEOUT=3m
 export FUEGO_BATCH_ID="hello-
 $(allocate_next_batch_id)"

 # don't stop on test errors
 set +e
 log_this "echo \"batch_id=$FUEGO_BATCH_ID\""
 TC_NAME="default"
 run_test Functional.hello_world
 TC_NAME="fail"
 run_test Functional.hello_world -s hello-fail
 TC_NAME="random"
 run_test Functional.hello_world -s hello-random
 set -e
}

Setting the batch_id

Fuego uses a batch id to indicate that a group of test runs are
related. Since a single Fuego test can be run in many different ways
(e.g. from the command line or from Jenkins, triggered manually or
automatically, or as part of one batch test or another), it is helpful
for the run data for a test to be assigned a batch_id that can be
used to generate reports or visualize data for the group of tests that
are part of the batch.

A batch test should set the FUEGO_BATCH_ID for the run to a unique
string for that run of the batch test. Each sub-test will store the
batch id in its run.json file, and this can be used to filter run data
in subsequent test operations. The Fuego system can provide a unique
number, via the routine allocate_next_batch_id. By convention, the batch_id for a
test is created by combining a test-specific prefix string with the
number returned from allocate_next_batch_id.

In the example above, the prefix used is ‘hello-’, and this would be
followed by a number returned by the function allocate_next_batch_id.

Executing sub-tests

The run_test function is used to execute the
sub-tests that are part of the batch. The other portions of the
example above show setting various shell variables that are used by
run_test, and turning off ‘errexit’ mode while the sub-tests are
running.

In the example above, TC_NUM, TC_NAME, and DEFAULT_TIMEOUT
are used for various effects. These variables are optional, and in most
cases a batch test can be written without having to set them. Fuego
will generate automatic strings or values for these variables if they
are not defined by the batch test.

Please see the documentation for run_test for
details about the environment and arguments used when calling the
function.

Avoiding stopping on errors

The example above shows use of set +e and set -e to control the
shell’s ‘errexit’ mode. By default, Fuego runs tests with the shell
errexit mode enabled. However, a batch test should anticipate that
some of its sub-tests might fail. If you want all of the tests in the
batch to run, even if some of them fail, they you should use set +e
to disable errexit mode, and set -e to re-enable it when you are
done.

Of course, if you want the batch test to stop if one of the sub-tests
fails, they you should control the errexit mode accordingly (for
example, leaving it set during all sub-test executions, or disabling
it or enabling it only during the execution of particular sub-tests).

Whether to manipulate the shell errexit mode or not depends on what
the batch test is doing. If it is implementing a sequence of
dependent test stages, the errexit mode should be left enabled. If a
batch test is implementing a series of unrelated, independent tests,
the errexit mode should be disabled and re-enabled as shown.

Test output

The run_test function logs test results in a format similar to TAP13.
This consists of the test output, followed by a line starting with the
batch id (inside double brackets), then “ok” or “not ok” to indicate
the sub-test result, followed by the testcase number and testcase
name.

A standard parser.py for this syntax is available and used by other
batch tests in the system (See
fuego-core/tests/Functional.batch_hello/parser.py)

Preparing the system for a batch job

In order to run a batch test from Jenkins, you need to define a
Jenkins job for the batch test, and jobs for all of the sub-tests that
are called by the batch test.

You can use ftc add-jobs with the batch test, and Fuego will create
the job for the batch test itself as well as jobs for all of its
sub-tests.

It is possible to run a batch test from the command line using ‘ftc
run-test’, without creating Jenkins jobs. However if you want to see
the results of the test in the Jenkins interface, then the Jenkins
test jobs need to be defined prior to running the batch test from the
command line.

Executing a batch test

A batch test is executed the same way as any other Fuego test. Once
installed as a Jenkins job, you can execute it using the Jenkins
interface (manually), or use Jenkins features to cause it to trigger
automatically. Or, you can run the test from the command line using
ftc run-test.

Viewing batch test results

You can view results from a batch test in two ways:

	Inside the Jenkins interface, or

	Using ftc to generate a report.

Jenkins batch test results tables

Inside the Jenkins interface, a batch job will display the list of
sub-tests, and the PASS/FAIL status of each one. In addition, if
there is a Jenkins job associated with a particular sub-test, there
will be a link in the table cell for that test run, that you can click
to see that individual test’s result and data in the Jenkins
interface.

Generating a report

You can view a report for a batch test, by specifying the batch_id
with the ftc gen-report command.

To determine the batch_id, look at the log for the batch test
(testlog.txt file). Or, generate a report listing the batch_ids for
the batch test, like so:

$ ftc gen-report --where test=batch_<name> --fields timestamp,batch_id

Select an appropriate batch_id from the list that appears, and note it
for use in the next command.

Now, to see the results from the individual sub-tests in the batch, use
the desired batch_id as part of a ‘’where’’ clause, like so:

$ ftc gen-report --where batch_id=<batch_id>

You should see a report with all sub-test results for the batch.

Miscelaneous notes

Timeouts

The timeout for a batch test should be long enough for all sub-tests
to complete. When a batch test is launched from Jenkins, the board on
which it will run is reserved and will be unavailable for tests until
the entire batch is complete. Keep this in mind when executing batch
tests that call sub-tests that have a long duration.

The timeout for individual sub-tests can be specified multiple ways.
First, the timeout listed in the testplan (embedded in fuego_test.sh
as the BATCH_TESTPLAN variable) is the one assigned to the Jenkins
job for the sub-test, when jobs are created during test installation
into Jenkins. These take effect when a sub-test is run independently
from the batch test.

If you want to specify a non-default timeout for a test, then you must
use a --timeout argument to the run_test function, for that
sub-test.

Parser module API

The file common.py is the python module for performing benchmark log
file processing, and results processing and aggregation.

It is used by the parser.py program from the test directory, to process
the log after each test run. The data from a test run is processed to:

	Check numeric values for pass/fail result(by checking against a
reference threshold values)

	Determine the overall result of the test, based on potentially
complex results criteria

	Save the data for use in history and comparison charts

Parser API

The following are functions used during log processing, by a test’s
parser.py program.

	parse_log() - parse the data from a
test log

	This routine takes a regular expression, with one or more
groups, and results a list of tuples for lines that matched the
expression

	The tuples consist of the strings from the matching line
corresponding to the regex groups

	process() - process results from a test

	This routine taks a dictionary of test results, and does 3
things:

	Formats them into the run.json file (run results file)

	Detects pass or fail by using the specified pass criteria

	Formats the data into charts (plots and tables)

	split_output_per_testcase()

	Split testlog into chunks accessible from the Jenkins user
interface (one per testcase)

In general, a parser module will normally call parse_log(), then
take the resulting list of matching groups to construct a dictionary
to pass to the process() routine.

If the log file format is amendable, the parser module may also call
split_output_per_testcase() to generate a set of files from the
testlog, that can be referenced from the charts generated by the
charting module.

Please see parser.py for more details and examples of
use of the API.

Deprecated API

Note

The following information is for historical purposes only.
Although the API is still present in Fuego, these APIs are deprecated.

In Fuego version 1.1 and prior, the following functions were used.
These are still available for backwards compatibility with tests
written for these versions of Fuego.

	parse()

	process_data()

(see parser.py for invocation details)

parse()

	input:

	cur_search_pattern - compiled re search pattern

	output:

	list of regular expression matches for each line matching the
specified pattern

This routine scans the current log file, using a regular expression.
It returns an re match object for each line of the log file that
matches the expression.

This list is used to populate a dictionary of metric/value pairs that
can be passed to the process_data function.

process_data

This is the main routine of the module. It processes the list of
metrics, and populates various output files for test.

	input:

	ref_section_pat - regular expression used to read reference.log

	cur_dict - dictionary of metric/value pairs

	m - indicates the size of the plot. It should be one of: ‘s’,
‘m’, ‘l’, ‘xl’

	if ‘m’, ‘l’, or ‘xl’ are used, then a multiplot is created

	label - label for the plot

This routine has the following outline:

	write_report_results

	read the reference thresholds

	check the values against the reference thresholds

	store the plot data to a file (plot.data)

	create the plot

	save the plot to an image file (plot.png)

Developer notes

functions in common.py

	hls - print a big warning or error message

	parse_log(regex_str) - specify a regular expression string to use
to parse lines in the log

	this is a helper function that returns a list of matches
(with groups) that the parser.py can use to populate its
dictionary of measurements

	parse(regex_compiled_object)

	similar to parse_log, but it takes a compiled regular expression
object, and returns a list of matches (with groups)

	this is deprecated, but left to support legacy tests

	split_tguid()

	split_test_id()

	get_test_case()

	add_results()

	init_run_data()

	get_criterion()

	check_measure()

	decide_status()

	convert_reference_log_to_criteria()

	load_criteria()

	apply_criteria()

	create_default_ref()

	prepare_run_data()

	extract_test_case_ids()

	update_results_json()

	delete()

	save_run_json()

	process(results)

	results is a dictionary with

	key=test_case_id (not including measure name)

	for a functional test, the test_case_id is usually
“default.<test_name>”

	value=list of measures (for a benchmark)

	or value=string (PASS|FAIL|SKIP) (for a functional test)

	process_data(ref_sections_pat, test_results, plot_type, label)

call trees

process_data(ref_section_pat, test_results, plot_type, label)
 process_data(measurements)
 prepare_run_data(results)
 run_data = (prepare non-results data structure)
 ref = read reference.json
 or ref = create_default_ref(results)
 init_run_data(run_data, ref)
 (put ref into run_data structure)
 (mark some items as SKIP)
 add_results(results, run_data)
 for each item in results dictionary:
 (check for results type: list or str)
 if list, add measure
 if str, set status for test_case
 apply_criteria(run_data)
 load_criteria()
 (load criteria.json)
 or convert_reference_log_to_criteria()
 check_measure()
 get_criterion()
 decide_status()
 get_criterion()
 save_run_json(run_data)
 update_results_json()
 (return appropriate status)

miscellaneous notes

	create_default_ref_tim
(for docker.hello-fail.Functional.hello_world)

	ref={‘test_sets’: [{‘test_cases’: [{‘measurements’:
[{‘status’: ‘FAIL’, ‘name’: ‘Functional’}], ‘name’: ‘default’}],
‘name’: ‘default’}]}

	create_default_ref

	ref={‘test_sets’: [{‘test_cases’: [{‘status’: ‘FAIL’,
‘name’: ‘default’}], ‘name’: ‘default’}]}

data format and tguid rules

The current API and the old parser API take different data and allow
different test identifiers. This sections explains the difference:

Data format for benchmark test with new API

	measurements[test_case_id] = [{“name”: measure_name,
“measure”: value}]

Data format for benchmark test with old API:

	in reference.log

	if tguid is a single word, then use that word as the
measure name and “default” as the test_case.

	e.g. for benchmark.arm, the reference.log has “short”.
This becomes the fully-qualified tguid: arm.default.arm.short:

	test_name = arm, test_case = default, test_case_id = arm,
measure = short

Data format for functional tests with new API and the old API is the
same:

	e.g. measurements[“status”] = “PASS|FAIL”

FAQ

Here is a list of Frequently Asked Questions and Answers about Fuego:

Languages and formats used

Q. Why does Fuego use shell scripting as the language for tests?

There are other computer languages which have more advanced features
(such as data structions, object orientation, rich libraries,
concurrency, etc.) than shell scripting. It might seem odd that shell
scripting was chosen as the language for implementing the base scripts
for the tests in fuego, given the availability of these other
languages.

The Fuego architecture is specifically geared toward host/target
testing. In particular, tests often perform a variety of operations
on the target in addition to the operations that are performed on the
host. When the base script for a test runs on the host machine,
portions of the test are invoked on the target. It is still true
today that the most common execution environment (besides native code)
that is available on almost every embedded Linux system is a
POSIX-compliant shell. Even devices with very tight memory
requirements usually have a busybox ‘ash’ shell available.

In order to keep the base script consistent, Fuego uses shell
scripting on both the host and target systems. Shell operations are
performed on the target using ‘cmd’, ‘report’ and ‘report_append’
functions provided by Fuego.

Note that Fuego officially use ‘bash’ as the shell on the host, but
does not require a particular shell implementatio to be available on
the target. Therefore, it is important to use only POSIX-compatible
shell features for those aspects of the test that run on target.

Fuego naming rules

To add boards or write tests for Fuego, you have to create a number of
files and define a number of variables.

Here are some rules and conventions for naming things in Fuego:

Fuego test name

	a Fuego test name must have one of the following prefixes:

	‘Functional.’

	‘Benchmark.’

	the name following the prefix is known as the base test name, and
has the following rules:

	it may only use letters, numbers and underscores

	that is - no dashes

	it may use upper and lower case letters

	All test definition materials reside in a directory with the full
test name:

	e.g. Functional.hello_world

Test files

	the base script file has the name fuego_test.sh

	the default spec file for a test has name spec.json

	the default criteria file for a test has the name criteria.json

	the reference file for a test has the name reference.json

	the parser module for a test has the filename parser.py

Test spec names

Test spec names are declared in the spec file for a test.
These names should consist of letters, numbers and underscores only.
That is, no periods should be used in spec names.

Every test should have at least one spec, called the ‘default’ spec.
If no spec file exists for a test, then Fuego generates a ‘default’
spec (on-the-fly), which is empty (ie. has no test variables).

Board names

	boards are defined by files in the /fuego-ro/boards directory

	their filenames consists of the board name, with the suffix “.board”

	e.g. beaglebone.board

	a board name should have only letters, numbers and underscores.

	specifically, no dashes, periods, or other punctuation is allowed

Jenkins element names

Several of the items in Fuego are represented in the Jenkins interface.
The following sections describe the names used for these elements.

Node name

	A Jenkins node corresponding to a board must have the same name as
the board.

	e.g. beaglebone

Job name

	A Jenkins job is used to execute a test.

	Jenkins job names should consist of these parts:
<board>.<spec>.<test_name>

	e.g. beaglebone.default.Functional.hello_world

Run identifier

A Fuego run identifier is used to refer to a “run” of a test - that is
a particular invocation of a test and it’s resulting output, logs and
artifacts. A run identifier should be unique throughout the world, as
these are used in servers where data from runs from different hosts
are stored.

The parts of a run id are separated by dashes, except that the
separator between the host and the board is a colon.

A fully qualified (global) run identifier consist of the following
parts:

	test name

	spec name

	build number

	the word on

	host

	board

FIXTHIS - global run ids should include timestamps to make them
globally unique for all time

Example:
Functional.LTP-quickhit-3-on-timdesk:beaglebone

A shortened run identifier may omit the on and host. This is
referred to as a local run id, and is only valid on the host where the
run was produced.

	Example:
	
	Functional.netperf-default-2-minnow

timestamp

	A Fuego timestamp has the format: YYYY-mm-dd_HH:MM:SS

	e.g. 2017-03-29_10:25:14

	times are expressed in localtime (relative to the host where they
are created)

test identifiers

Also know as TGUIDs (or test globally unique identifiers), a test
identifier refers to a single unit of test operation or result from
the test system. A test identifier may refer to a testcase or an
individual test measure.

They consist of a several parts, some of which may be omitted in some
circumstances

The parts are:

	testsuite name

	testset name

	testcase name

	measure name

Legal characters for these parts are letters, numbers, and underscores.
Only testset names may include a period (“.”), as that is used as the
separator between constituent parts of the identifier.

testcase identifiers should be consistent from run-to-run of a test,
and should be globally unique.

test identifiers may be in fully-qualified form, or in shortened
form - missing some parts. The following rules are used to convert
between from shortened forms to fully-qualified forms.

If the testsuite name is missing, then the base name of the test is
used.

	e.g. Functional.jpeg has a default testsuite name of “jpeg”

If the testset name is missing, then the testset name is “default”.

A test id may refer to one of two different items:

	a testcase id

	a measure id

A fully qualified test identifier consists of a testsuite name,
testset name and a testcase name. Shortened names may be used, in
which case default values will be used for some parts, as follows:

If a result id has only 1 part, it is the testcase name. The testset
name is considered to be default, and the testsuite name is the base
name of the test.

That is, for the fuego test Functional.jpeg, a shortened tguid of
test4, the fully qualified name would be:

	jpeg.default.test4

If a result id has 2 parts, then the first part is the testset name
and the second is the testcase name, and the testsuite name is the
base name of the test.

measure id

A measure identifier consists of a testsuide id, testset id, testcase
id and measure name.

A shortened measure id may not consist of less than 2 parts. If it
only has 2 parts, the first part is the testcase id, and the second
part is the measure name. In all cases the last part of the name is
the measure name, the second-to-last part of the name is the testcase
name.

If there are three parts, the first part is the testset name.

Test variable names

Test variable names are defined in the board file, and by the user
via ‘ftc set-var’. Also they are generated from variables declared
in spec files. The consist of all upper-case, using only letters and
underscores

Some test variable prefixes and suffixes are used in a consistent way.

Dependency check variables

The following is the preferred format for variables used in dependency
checking code:

	PROGRAM_FOO - require program ‘foo’ on target. The program
name is upper-cased, punctuation or spaces are replaced with ‘_’,
and the name is prefixed with ‘PROGRAM_’. The value of variable
is full path on target where program resides.

	ex: PROGRAM_BC=/usr/bin/bc

	HEADER_FOO - require header file ‘foo’ in SDK. The header
filename is stripped of its suffix (I don’t know if that’s a good
idea or not), upper-cased, punctuation or spaces are replaced with
‘_’, and the name is prefixed with ‘HEADER_’. The value of
variable is the full path in the SDK of the header file:

	ex:
HEADER_FOO=/opt/poky2.1.2/sysroots/x86_64-pokysdk-
linux/usr/include/foo.h

	SDK_LIB_FOO - require ‘foo’ library in SDK. The library
filename is stripped of the ‘lib’ prefix and .so suffix,
upper-cased, punctuation and spaces are replaced with ‘_’, and the
name is prefixed with ‘SDK_LIB_’. The value of the variable is
the full path in the SDK of the library.

	ex: SDK_LIB_FOO=/opt/poky2.1.2/sysroots/x86_64-pokysdk-
linux/usr/lib/libfoo.so

	Note that in case a static library is required (.a), then the
variable name should include that suffix:

	ex: SDK_LIB_FOO_A=/opt/poky1.2.1/sysroots/x86_64-pokysdk-
linux/usr/lib/libfoo.a

	TARGET_LIB_FOO - require ‘foo’ library on target. The library
filename is stripped of the ‘lib’ prefix and .so suffix (not sure
this is a good idea, as we potentially lose a library version
requirement), upper-cased, punctuation and spaces are replaced with
‘_’, and the name is prefixed with ‘TARGET_LIB_’. The value of the
variable is the full path of the library on the target board.

	ex: TARGET_LIB_FOO=/usr/lib/libfoo.so

Artwork

This page has artwork (logos, photos and images) for use in Fuego
presentations and documents.

Logos

	fuego-logo.svg (SVG, high-res)

[image: _images/fuego-logo.png]

	fuego-logo.png (png, 660x781 w/ transparent background)

[image: _images/fuego-logo.png]

	fuego-flame-only.png: (png, 490x617 w/ transparent background)

[image: _images/fuego-flame-only.png]

	fuego-logo-from-Daniel:svg (SVG, high-res)

Please see this image in the Fuegotest wiki at:
http://fuegotest.org/ffiles/fuego-logo-from-Daniel.svg
(Sphinx cannot include this image in PDF output)

Banners

	Fuego Jamboree: (png, 567x120)

[image: _images/HeadTitle_Fuego-Jamboree.png]

	firestrip: (jpg, 1710x282)

[image: _images/fire-strip-bg1.jpg]

images

	vertical fire (public domain, png, 687x2712)

[image: _images/Fire-image-from-wikipedia-Public-Domain-white-bg.png]

	horizontal fire (public domain, jpg, 615x318)

[image: _images/horizontal-fire-public-domain.jpg]

	rectangle fire (public domain, jpg, 3840x2160)

[image: _images/Fire-tahoe-firepit-by-Tim.jpg]

	rectangle fire with Fuego (png, 1431x1056)

[image: _images/Tahoe-firepit-with-Fuego.png]

Photos

	Tim Bird presenting Introduction to Fuego at ELC 2016 (Youtube
video framegrab) (png, 370x370)

[image: _images/Youtube-Intro-to-Fuego-ELC-2016-square.png]

Diagrams

	Fuego architecture (png, 811x566)

[image: _images/Fuego-architecture.png]

	Fuego test phases (png,) {{BR}}

[image: _images/fuego-test-phases.png]

Presentation templates

There are templates for making Fuego presentations, on the Fuego
wiki at: http://fuegotest.org/wiki/Presentation_Templates

Glossary

Here is a glossary of terms used in this wiki:

Here is a short table that relates a few Jenkins terms to Fuego terms:

	Jenkins term

	Fuego term

	Description

	slave

	‘’none’’

	this is a long-running jenkins process,
that executes jobs. It is usually (?)
assigned to a particular node

	node

	board

	item being tested (Fuego defines
Jenkins node for each board in the system)

	job

	test

	a collection of information needed to
perform a single test

	‘’none’’

	request

	a request to run a particular test on a
board

	build

	run(or ‘test run’)

	the results from executing the job or test

	‘’none’’

	plan

	the plan has the list of tests and how to
run them (which variation, or ‘spec’ to
use)

	‘’none’’

	spec

	the spec indicates a particular variation
of a test

B

base test script

See test script.

benchmark

A type of test where one or more numeric metrics indicates the status
of the test. See Benchmark parser notes
for more information about processing these metrics.

binary package

A tarfile containing the materials that would normally be deployed to
the board for execution.

board file

A file that describes (using environment variables) the attributes of
a target board. This has the extension .board and is kept in the
directory /fuego-ro/boards.

build

In Jenkins terminology, a “build” is an execution of a test, and the
resulting artifacts associated with it. In Fuego, this is also
referred to as a test “run”.

C

console log

The full output of execution of a test from Jenkins.
See Log files for details.

criteria

This is an expression which indicates whether how a test result
should be interpreted. This is also referred to as a “pass criteria”.
Criteria files are stored in criteria.json files. See
criteria.json for details.

D

devlog

The developer log for a test.
See Log files for details.

Device

The name of a target board in the Fuego system.

device under test

In test terminology, this refers to the item being tested.
In Fuego, this may also be called the ‘’Device’’, ‘’board’’,
‘’node’’, or target

distribution

This refers to a set of software that is running on a Linux machine.
Example “distributions” are Debian, Angstrom or Android. The
distribution defines file locations, libraries, utilities and several
important facilities and services of the machine (such as the init
process, and the logger).

F

functional test

A type of test that returns a single pass/fail result, indicating
whether the device under test. It may include lots of sub-tests.

J

Jenkins

An advanced continuous integration system, used as the default
front-end for the Fuego test framework. see Jenkins

job

In Jenkins terminology, a job is a test

L

log file

Several log files are created during execution of a test. For details
about all the different log files, see Log files.

M

metric

A numeric value measured by a benchmark test as the result
of the test. This is compared against a threshold value to determine
if the test passed or failed. See Benchmark
parser notes

O

overlay

This is a set of variables and functions stored in a fuegoclass file,
which are used to customize test execution for a particular board.
See Overlay Generation for details.

ovgen.py

Program to collect “overlay” data from various scripts and data
files, and produce the final test script to run.
see Overlay Generation.

P

package

See test package.

parsed log

The test log file after it has been filtered by log_compare.
See Log files for details.

parser.py

A python program, included with each Benchmark test, to scan the test
log for benchmark metrics, check each against a reference threshold,
and produce a plot.png file for the test. See parser.py and
Benchmark parser notes for more information.

provision

To provision a board is to install the system software on it. Some
board control systems re-provision a board for every test. In
general, Fuego runs a series of tests with a single system software
installation.

R

reference log

This file (called “reference.log”) defines the regression threshhold
(and operation) for each metric of a benchmark test. See
reference.log and Benchmark parser notes

run

See test run.

S

spec variable

A test variable that comes from a spec file. See
Test variables

stored variable

A test variable that is stored in a read/write file, and can be
updated manually or programmatically. See
Test variables

syslog

The system log for a test. This is the system log collected during
execution of a test. See Log files for details.

T

test

This is a collection of scripts, jenkins configuration, source code,
and data files used to validate some aspect of the device under test.
See Fuego Object Details for more information.

test log

This is the log output from the actual test program on the target.
There are multiple logs created during the execution of a test, and
some might casually also be called “test logs”. However, in this
documentation, the term “test log” should be used only to refer to the
test program output. See Log files for details.

test package

This is a packaged version of a test, including all the materials
needed to execute the test on another host. See Test
package system

test phases

Different phases of test execution defined by Fuego: pre_test, build,
deploy, test_run, get_testlog, test_processing, post_test. For a
description of phases see: Fuego test phases

test program

A program that runs on the target to execute a test and output the
results. This can be a compiled program or a shell script (in which
case the build step is empty)

test run

This is a single instance of a test execution, containing logs and
other information about the run. This is referred to in Jenkins as a
‘build’.

test script

The shell script that interfaces between the Fuego core system and a
test program. This is a small script associated with each test.
It is called fuego_test.sh, and it provides a set of test
functions that are executed on the host (in the container) when a
test is run.

The script declares a tarfile, and functions to build,
deploy and run the test. The test script runs on the host. This is
also called the ‘base test script’. For details about the environment
that a script runs in or the functions it may call, see Variables,
Core interfaces, and Test Script APIs.

test variable

This is the name of a variable available to the a test during it’s
execution. See Test variables.

TOOLCHAIN

Defines the toolchain or SDK for the device. This is used to select a
set of environment variables to define and configure the toolchain for
building programs for the intended test target.

tools.sh

File containing the definition of toolchain variables for the
different platforms installed in the container (and supported by the
test environment) See tools.sh for details.

V

variable

See test variable

Raspberry Pi Fuego Setup

This is a list of instructions for setting up a Raspberry Pi board for
use with Fuego. These instructions will help you set up the ssh
server, used by Fuego to communicate with the board, and the test
directory on the machine, that Fuego will use to store programs and
files during a test.

These instructions and the screen shots are for a Raspberry Pi Model 3
B, running “Raspbian 9 (stretch)”.

This assumes that the Raspberry Pi is already installed, and that
networking is already configured and running.

Obtain your network address

First, determine what your Pi’s network address is. You can see this
by using the command ‘ifconfig’ in a terminal window, and checking for
the ‘inet’ address.

Or, move your mouse cursor over the network icon in the desktop panel
bar. If you leave the mouse there for a second or two, a box will
appear showing information about your current network connection.

This is what the network information box looks like (in the upper
right corner of this screen shot):

[image: _images/rpi-network-address.png]
In this case, my network address is 10.0.1.103. Your address might
start with 192.168, which is common for home or local networks.

Note this address for use later.

Configure the SSH server

In order for other machines to access the Pi remotely, you need to
enable the ssh server.

This is done by enabling the SSH interface in the Raspberry Pi
Configuration dialog.

To access this dialog, click on the raspberry logo in the upper right
corner of the main desktop window. Then click on “Preferences”, then
on “Raspberry Pi Configuration”. In the dialog that appears, click on
the “Interfaces” tab, and on the list of interfaces click on the
“Enable” radio button for the SSH interface.

Here is the menu:

[image: _images/rpi-config-menu.png]
The configuration dialog looks something like this:

[image: _images/raspberry-pi-configuration-interfaces-ssh-enable.png]

Try connecting

Now, close this dialog, and make sure you can access the Pi using SSH
from your host machine.

Try the following command, from your host machine:

	ssh pi@<’’your_address’’>

You will be asked for the password for the ‘pi’ user account.

If you successfully log in, you will be at a shell prompt.

Configure sshd for root access (if applicable)

If you intend to execute Fuego tests as root, you should configure
the SSH server to permit root login.

This is not recommended on machines that are in production, as it is
a significant security risk. However, for test machines it may be
acceptable to allow root access over ssh.

To do this, on the Raspberry Pi, with root permissions, edit the file
/etc/ssh/sshd_config and add the following line:

PermitRootLogin yes

Note

You need to stop and start the ssh server, or reboot the board,
in order to have this new configuration take effect.’’

Make a test directory

You can use any directory you like for executing tests from Fuego.
However, we recommend using the ‘/home/fuego’ directory.
These instructions indicate how to create that directory.

If you are using root as your test user account, then create
a directory on the Raspberry Pi for test programs and files.

If logged in as the ‘pi’ account, then switch to root (using
something like ‘sudo su’), and type,
at a shell prompt:

$ mkdir /home/fuego

If you do not wish to use the root account for testing, then
you should create a ‘fuego’ account for testing. To do this,
use the ‘adduser’ program. You will be prompted for some
information.

$ adduser fuego

Answer the questions, including setting the password for this account.
Remember the password you select, and use that in the board file when
configuring Fuego to access this board.

This will create the directory /home/fuego.

The directory /home/fuego is what should be used in
the board file when configuring Fuego to operate with this board.

Add the board file to Fuego

Now that you have set up the Raspberry Pi board, add the board file to
Fuego. Assuming your IP address is 10.0.1.17, and you wish to log in
as root, you would create a board file
called “rpi.board”, and located at

<fuego-top-dir>/fuego-ro/boards/rpi.board

with the following contents:

inherit "base-board"
include "base-params"

IPADDR="10.0.1.17"
LOGIN="root"
BOARD_TESTDIR="/home/fuego"
PASSWORD="put-the-root-password-here"
TOOLCHAIN="debian-armhf"
TRANSPORT="ssh"
ARCHITECTURE="arm"
FUEGO_TARGET_TMP="/home/fuego"

Note

Of course, use the correct root password for your board

Add the toolchain to Fuego

The Raspbery Pi board is an ARM 32-bit platform.

Add the ‘debian-armhf’ toolchain to the Fuego docker container, using
the helper script in the fuego-ro/toolchains directory.

Inside the Fuego container, run:

$ /fuego-ro/toolchains/install_cross_toolchain.sh armhf

Add a node and jobs for the board

Inside the Fuego container, run:

$ ftc add-node -b rpi

Add the tests you want to run, as Jenkins jobs. You should always
add the “fuego_board_check” test, as a way to automatically determine
that status of a board.

Inside the Fuego container, run:

$ ftc add-job -b rpi -t Functional.fuego_board_check

An easy way to populate Jenkins with a set of tests is to install a
batch test.

Install the “smoketest” batch test, as follows:

Inside the Fuego container, run:

$ ftc add-jobs -b rpi -t Functional.batch_smoketest

Run a board check

To see if everything is set up correctly, execute the test:
Functional.fuego_board_check.

In the Jenkins interface, select
“rpi.default.Functional.fuego_board_check” and select the menu item
“Build Now” on the left hand side of the screen.

Wait a few moments for the test to complete. when the test completes,
check the log for the test by clicking on the link to the ‘testlog’.

Using the qemuarm target

Here are some quick instructions for using the qemu-arm “board” that is
preinstalled in fuego.

Fuego does not ship with a qemuarm image in the repository, but
assumes that you have built one with the Yocto Project.

If you don’t have one lying around, you will need to build one. Then
you should follow the other steps on this page to configure it to run
with Fuego.

Build a qemuarm image

Here are some quick steps for building a qemuarm image using the Yocto
Project: (See the Project Quick Start [http://www.yoctoproject.org/docs/2.1/yocto-project-qs/yocto-project-qs.html|Yocto],
for more information)

Note that these steps are for Ubuntu.

	Make sure you have required packages for building the software

$ sudo apt-get install gawk wget git-core diffstat unzip texinfo

gcc-multilib build-essential chrpath socat libsdl1.2-dev xterm

	Install the qemu software

$ sudo apt-get install qemu-user

	Download the latest stable release of the Yocto Project

$ git clone git://git.yoctoproject.org/poky

	Configure Yocto Project for building the qemuarm target

$ cd poky
$ source oe-init-build-env build-qemuarm build-qemuarm
$ edit conf/local.conf

	
	Under the comment about “Machine Selection”, uncomment the line
	‘MACHINE ?= “qemuarm”’

	Build a minimal image (this will take a while)

$ bitbake core-image-minimal

Running the qemuarm image

You can run the emulator, using the image you just built:

	Run the emulator

$ runqemu qemuarm

	Find the address and ssh port for the image

	Inside the image, do ifconfig eth0

Test connectivity

From the host, verify that the networking is running:

$ ping 192.168.7.2
$ ssh root@192.168.7.2

Of course, substitute the correct IP address in the commands above.

Once you know that things are working, directly connecting from the host
to the qemuarm image, make sure the correct values are in the
qemu-arm.board file. You can edit this file on your host in
fuego-ro/boards/qemu-arm.board

Here are the values you should set:

IPADDR="192.168.7.2"
SSH_PORT=22
LOGIN="root"
PASSWORD=""

Test building software

It is important to be able to build the test software for the image
you are using with qemu.

The toolchain used to compile programs for a board is controlled via the
TOOLCHAIN variable in the board file. Currently the
qemu-arm.board file specifies TOOLCHAIN=”debian-armhf”.

You may need to install the debian-armhf toolchain, or your own SDK
from your Yocto Project build, into the Fuego container in order to
build test programs for the qemuarm emulator. See Adding a
toolchain for information about how to do that.

Try building a simple program, like hello_world, as a test for the new
system, and see what happens. You can try this by executing the
test Functional.hello_world. You can do that with this command:

$ ftc run-test -b qemu-arm -t hello_world

Variables

This is an index of all the variables used by Fuego:

FIXTHIS - I don't have all the fuego variables documented here yet

See also Core interfaces

A

	ARCHITECTURE : the processor architecture of the target board

	Defined in the board file for a target

	Used by toolchain and build scripts for building the tests

	NOTE: this appears to only be used by iozone.sh

	Example value: arm

	ARCH : architecture used by the toolchain

	Example value: arm

	Set by tools.sh based on TOOLCHAIN

	AS : name of the assembler

	Set by tools.sh based on TOOLCHAIN

	Commonly used during the build phase
(in the function test_build)

B

	BAUD : Baud rate to be used with the serialport

	Defined in the board file for a target

	Used by serial transport

	Example value: 115200

	BOARD_TESTDIR : directory on the target board where test data will
be placed

	Defined in the board file for a target

	Example value: /home/fuego

C

	CC : name of the C compiler

	Set by tools.sh based on TOOLCHAIN

	Commonly used during the build phase
(in the function test_build)

	Example value: arm-linux-gnueabihf-gcc

	CONFIGURE_FLAGS : flags used with the ‘configure’ program

	Set by tools.sh based on TOOLCHAIN

	Commonly used during the build phase
(in the function test_build)

	CROSS_COMPILE : cross-compile prefix used for kernel builds

	Set by tools.sh based on TOOLCHAIN

	Example value: arm-linux-gnueabihf-

	NOTE: this is often $PREFIX followed by a single dash

	CPP : name of the C pre-processor

	Set by tools.sh based on TOOLCHAIN

	CXX : name of the C++ compiler

	Set by tools.sh based on TOOLCHAIN

	CXXCPP : name of the C++ pre-processor

	Set by tools.sh based on TOOLCHAIN

F

	FUEGO_BUILD_FLAGS : has special flags used to control builds
(for some tests)

	See FUEGO_BUILD_FLAGS

	FUEGO_CORE : directory for Fuego core scripts and tests

	This is defined in Jenkins and Fuego system-level configurations

	This will always be /fuego-core inside the Docker container,
but will have a different value outside the container.

	Example value: /fuego-core

	FUEGO_DEBUG : controls whether Fuego emits debug information during
test execution. This variables is now deprecated in favor of
FUEGO_LOGLEVELS

	See FUEGO_DEBUG

	FUEGO_LOGLEVELS : controls what level of messages Fuego emits
during test execution

	See FUEGO_LOGLEVELS

	FUEGO_RO : directory for Fuego read-only data

	This is defined in the Jenkins and Fuego system-level
configurations

	This will always be /fuego-ro inside the Docker container,
but will have a different value outside the container.

	Example value: /fuego-ro

	FUEGO_RW : directory for Fuego read-write data

	This is defined in Jenkins and Fuego system-level configurations

	This will always be /fuego-rw inside the Docker container,
but will have a different value outside the container.

	Example value: /fuego-rw

	FUEGO_TARGET_TMP : directory on target to use for syslogs

	This is defined in the board file for a target board

	This should specify a directory in the board filesystem that is
persistent across reboots. This is to override the default temp
directory (of /tmp), if that directory is erased on a board
reboot.

	FUEGO_TEST_PHASES : specifies a list of phases to perform during
test execution

	This is usually set by ftc run-test based on the ‘-p’ option.

	This is a space-separated list of strings, from the following
possible individual phase strings: pre_test, pre_check, build,
deploy, snapshot, run, post_test, processing,
makepkg

	Example value: pre_test pre_check build deploy snapshot run
post_test processing

G

	GEN_TESTRES_FILE : set to the value of TEST_RES, when a
BATCH_TESTPLAN is in effect

I

	IO_TIME_SERIAL : Time required for echoing the whole command and
response

	Defined in the board file

	Used by the transport functions

	Example value: 0.1

	IPADDR : IP address of the target board

	Defined in the board file

	Used by the transport functions

	Example value: 10.0.1.74

L

	LD : name of the linker

	Set by tools.sh based on TOOLCHAIN

	Example value: arm-linux-gnueabihf-ld

	LOGIN : login account name for the target

	Defined in the board file for the target

	Used by the transport functions

	The account on the target should have sufficient rights to run a
variety of tests and perform a variety of operations on the target

	Example value: root

M

	MAX_BOOT_RETRIES : Number of times to retry connecting to target
during a target_reboot operation.

	Defined in the board file

	Example value: 20

	MMC_DEV : device filename for an MMC device on the target

	Defined in the board file

	Used by filesystem test specs

	Example value: /dev/mmcblk0p2

	MMC_MP : mount point for a filesystem on an MMC device on the target

	Defined in the board file

	Used by filesystem test specs

	Example value: /mnt/mmc

	MOUNT_BLOCKDEV : device filename for a block device on the target

	Defined in a filesystem test spec

	e.g. in (bonnie, fio, ffsb, iozone, synctest, aiostress,
dbench, tiobench).spec

	Usually references either MMC_DEV, SATA_DEV or USB_DEV,
depending on what the test spec indicates to test

	Example value: /dev/sda1

	MOUNT_POINT : mount point for a filesystem to be tested on the target

	Defined in a filesystem test spec

	e.g. in (bonnie, fio, ffsb, iozone, synctest, aiostress,
dbench, tiobench).spec

	Usually references either MMC_MP, SATA_MP, or USB_MP, depending
on what the test spec indicates to test

	Example value: /mnt/sata

N

	NODE_NAME : the name of the board

	This is set by Jenkins, and is the first part of the
Fuego job name

O

	OF_ROOT : root of overlay system

	Example value: /home/jenkins/overlays/

P

	PASSWORD : password used with to login to the target board

	Defined in the board file for a target

	Used by the transport functions

	It can be the empty string: “”

	Example value: mypass

	PLATFORM : name of the target “platform” This is used to identify
the toolchain used for building tests. This has been deprecated.
Please use TOOLCHAIN instead.

	PREFIX : toolchain prefix

	Set by tools.sh based on TOOLCHAIN

	Example value: arm-linux-gnueabihf

	NOTE: see also CROSS_COMPILE

R

	REP_DIR : directory where reports are stored

	Example value: /home/jenkins/logs/logruns/

	REP_GEN : report generator program

	Example value: /home/jenkins/scripts/loggen/gentexml.py

	REP_LOGGEN : program used to generate report logs?

	Example value: /home/jenkins/scripts/loggen/loggen.py

S

	SATA_DEV : device node filename for a SATA device on the target

	Defined in the board file

	Used by filesystem tests

	Example value: /dev/sda1

	SATA_MP : mount point for a filesystem on a SATA device on the target

	Used by filesystem tests

	Example value: /mnt/sata

	SRV_IP : IP address of server machine (host machine where fuego runs)

	Defined in base-board.fuegoclass

	Obtained dynamically using the ip command

	Can be defined in a board file for a target, using an override
command

	Used by networking tests (NetPIPE, iperf, netperf)

	Example value: 10.0.1.1

	SSH_PORT : port to use for ssh connections on the target

	Defined in the board file for the target

	The default port for sshd is 22

	Example value: 22

	SERIAL : port to use for serial connections on the target

	Defined in the board file for the target

	The device file name as detected in Docker container

	Example value: ttyACM0

T

	TESTLOG : full path to log for a particular test

	Example value: /home/jenkins/logs/Functional.bzip2/
testlogs/bbb.2016-06-24_18-12-53.2.log

	TEST_RES : full path to JSON results file for a test

	Example value: /home/jenkins/logs/Functional.bzip2/testlogs/
bbb.2016-06-24_18-12-53.2.res.json

	TESTDIR : name of the directory for a particular test

	This is just the directory name, not the full path (see $TEST_HOME)

	This is also used as the reference parse log prefix

	Example value: Functional.bzip2

	TEST_HOME : full path to the root of the test directory

	Example value: /fuego-core/tests/Functional.bzip2

	TOOLCHAIN : name of the toolchain used to build test programs for a
board.

	Defined in the board file

	Used in tools.sh

	Example value: debian-armhf

	NOTE: this replaced ‘PLATFORM’, used in earlier versions of Fuego

	TRANSPORT : type of connection between the host system and the target
system

	Defined in the board file for the target

	possible values: ssh, serial, ttc, ssh2serial,
local

	Others anticipated are: adb, lava

	Used by the transport functions

	Example value: ssh

	TTC_TARGET : target name used with ttc command

	Defined in the board file for the target

	Used by the transport functions, for the ttc transport only

	Example value: beaglebone

U

	USB_DEV : device filename for an block device provided by a USB
device on the target

	Defined in the board file

	Used by filesystem test specs

	Example value: /dev/sdb1

	USB_MP : mount point for a filesystem on an USB device on the target

	Defined in the board file

	Used by filesystem test specs

	Example value: /mnt/usb

UNDOCUMENTED (YET)

	TRIPLET

	LTP_OPEN_POSIX_SUBTEST_COUNT_POS

	Defined in board file for a target

	LTP_OPEN_POSIX_SUBTEST_COUNT_NEG

	Defined in board file for a target

	EXPAT_SUBTEST_COUNT_POS

	Defined in board file for a target

	EXPAT_SUBTEST_COUNT_NEG

	Defined in board file for a target

	OF_ROOT

	OF_CLASSDIR

	OF_DEFAULT_SPECDIR

	OF_OVFILES

	OF_CLASSDIR_ARGS

	OF_TESTPLAN_ARGS

	OF_SPECDIR_ARGS

	OF_OUTPUT_FILE

	OF_OUTPUT_FILE_ARGS

	OF_DISTRIB_FILE

	OF_OVGEN

	OF_BOARD_FILE

	BATCH_TESTPLAN

	OF_TESTPLAN

	OF_TESTPLAN_ARGS

	OF_OVFILES_ARGS

Dynamic Variables

“Dynamic variables” in Fuego are variables that can be passed to a
test on the command line, and used to customize the operation of a
test, for a particular test run.

In general testing nomenclature this is referred to as test
parameterization.

The purpose of dynamic variables is to support “variant” testing,
where a script can loop over a test multiple times, changing the
variable to different values.

In Fuego, during test execution dynamic variable names are expanded to
full variables names that are prefixed with the name of the test. A
dynamic variable overrides a spec variable of the same name.

Here is an example of using dynamic variables:

$ ftc run-test -b beaglebone -t Benchmark.Dhrystone --dynamic-vars "LOOPS=100000000"

This would override the default value for BENCHMARK_DHRYSTONE_LOOPS,
setting it to 100000000 (100 million) for this run. Normally, the
default spec for Benchmark.Dhrystones specifies a value of 10000000
(10 million) for LOOPS.

This feature is intended to be useful for (among other things) doing
‘git bisect’s of a bug, passing a different git commit id for each
iteration of the test.

See Test_variables for more information.

Notes

Note that dynamic vars are added to the runtime spec.json file, which
is saved in the log directory for the run being executed.

This spec.json file is copied from the one specified for the run
(usually from the test’s home directory).

If dynamic variables have been defined for a test, then they are
listed by name in the run-specific spec.json file, as the value of the
variable “dyn_vars”. The reason for this is to allow someone who
reviews the test results later to easily see whether a particular test
variable had a value that derived from the spec, or from a dynamic
variable. This is important for proper results interpretation.

Troubleshooting Guide

This page describes problems encountered using Fuego, and their solutions.

Note

for Editors: please put each issue in it’s own page section.

Installation

Problem with default Jenkins port

Fuego has Jenkins default to using port 8090 on the host system.
However, if you have something else already running on port 8090, you
may wish to change this.

You can change the Jenkins port during installation of Fuego,
using an argument to the install.sh script. For example,
to install Fuego with Jenkins configured to use port 9999, use
the following command during installation:

$./install.sh fuego 9999

To change the Jenkins port for an already-built Fuego container,
start the container, and inside the container edit the file:

	/etc/default/jenkins

Change the line that says: HTTP_PORT=8090

Change to port to whatever your like.

Also, check the line that defines JENKINS_ARGS. Mine looked like this:

JENKINS_ARGS="--webroot=/var/cache/jenkins/war --httpPort=8090 --prefix=/fuego"

Change this line to read as follows:

JENKINS_ARGS="--webroot=/var/cache/jenkins/war --httpPort=$HTTP_PORT --prefix=/fuego"

Then restart Jenkins:

	$ service jenkins restart

Problem creating docker file

Make sure you are running on a 64-bit version of the Linux kernel on
your host machine.

Problem starting Jenkins after initial container creation

Doug Crawford reported a problem starting Jenkins in the container
after his initial build.

$ sudo ./docker-create-container.sh
Created JTA container 6a420f901af7847f2afa3100d3fb3852b71bc65f92aecd13a9aefe0823d42b77
$ sudo ./docker-start-container.sh Starting JTA container
6a420f901af7847f2afa3100d3fb3852b71bc65f92aecd13a9aefe0823d42b77
[....] Starting Jenkins Continuous Integration Server: jenkinssu: System error failed!
[ok] Starting OpenBSD Secure Shell server: sshd.
[ok] Starting network benchmark server.

The error string is jenkinssu: System error

Takuo Kogushi provides the following response:

I had the same issue. I did some search in the net and found it is not
a problem of fuego itself. As far as I know there are two
workarounds;

	Rebuild and install libpam with –disable-audit option (in the container) or

	Modify docker-create-container.sh to add –pid=”host” option to docker
create command

Here is a patch provided by Koguchi-san:

diff --git a/fuego-host-scripts/docker-create-container.sh b/fuego-host-scripts/docker-create-container.sh
index 2ea7961..24663d6 100755
--- a/fuego-host-scripts/docker-create-container.sh
+++ b/fuego-host-scripts/docker-create-container.sh
@@ -7,7 +7,7 @@ while [-h "$SOURCE"]; do # resolve $SOURCE until the file is no longer a symli done DIR="$(cd -P "$(dirname "$SOURCE")" && pwd)"

-CONTAINER_ID=`sudo docker create -it -v $DIR/../userdata:/userdata --net="host" fuego`
+CONTAINER_ID=`sudo docker create -it -v $DIR/../userdata:/userdata --pid="host" --net="host" fuego`
 CONTAINER_ID_FILE="$DIR/../last_fuego_container.id"
 echo "Created Fuego container $CONTAINER_ID"
 echo $CONTAINER_ID > $DIR/../last_fuego_container.id

Actually I have not tried the first one and do not know if there is
any side effects for the second.

This may be related to this docker bug:
https://github.com/docker/docker/issues/5899

General

Timeout executing ssh commands

In some cases, the ssh command used by Fuego takes a very long time to
connect. There is a timeout for the ssh commands, specified as 15
seconds in the cogent repository and 30 seconds in the fuegotest
repository.

The timeout for ssh commands is specified in the file

	/fuego-core/scripts/overlays/base/base-params.fuegoclass

You can change ConnectTimeout to something longer by editing the file.

FIXTHIS - make ConnectTimeout for ssh connections a board-level test variable

ssh commands taking a long time

Sometimes, even if the command does not time, the SSH operations
on the target take a very long time for each operation.

The symptom is that when you are watching the console output for a
test, the test stops at the point of each SSH connection to the
target.

One cause of long ssh connection times can be that the target ssh
server (sshd) is configured to do DNS lookups on each inbound
connection.

To turn this off, on the target, edit the file:

	/etc/ssh/sshd_config

and add the line:

UseDNS no

This line can be added anywhere in the file, but I recommend adding
it right after the UsePrivilegeSeparation line (if that’s there).

OSS Test Vision

This page describes aspects of vision for the Fuego project, along
with some ideas for implementing specific ideas related to this
vision.

Overview of concepts

	Decentralized testing

	Automated selection of tests based on test or platform attributes

	Standardized definition of test attributes and dependencies

	Way to connect developers with relevant test hardware

	Test Store (a public repository of available tests)

	Way to share test-related information (useful parameters, results
interpretation)

	Standards for test packaging

	Provide incentives for test activities

Letter to ksummit discuss

Here’s an e-mail Tim sent to the ksummit-discuss list in October,
2016

I have some ideas on Open Source testing that I'd like to
throw out there for discussion. Some of these I have been
stewing on for a while, while some came to mind after talking
to people at recent conference events.

Sorry - this is going to be long...

First, it would be nice to increase the amount of testing we
do, by having more test automation. (ok, that's a no-brainer).
Recently there has been a trend towards more centralized
testing facilities, like the zero-day stuff or board farms
used by *KernelCI*. That makes sense, as this requires
specialized hardware, setup, or skills to operate certain
kinds of test environments. As one example, an automated test
of kernel boot requires automated control of power to a board
or platform, which is not very common among kernel developers.

A centralized test facility has the expertise and hardware to
add new test nodes relatively cheaply. They can do this more
quickly and much less expensively than the first such node by
an individual new to testing.

However, I think to make great strides in test quantity and
coverage, it's important to focus on ease of use for
individual test nodes. My vision would be to have tens of
thousands of individual test nodes running automated tests on
thousands of different hardware platforms and configurations
and workloads.

The kernel selftest project is a step in the right direction
for this, because it allows any kernel developer to easily
(in theory) run automated unit tests for the kernel. However,
this is still a manual process. I'd like to see improved
standards and infrastructure for automating tests.

It turns out there are lots of manual steps in the testing
and bug-fixing process with the kernel (and other
Linux-related software). It would be nice if a new system
allowed us to capture manual steps, and over time convert
them to automation.

Here are some problems with the manual process that I think
need addressing:

1) How does an individual know what tests are valid for their
platform? Currently, this is a manual decision. In a world
with thousands or tens of thousands of tests, this will be
very difficult.

We need to have automated mechanisms to indicate which tests are
relevant for a platform. Test definitions should include a
description of the hardware they need,or the test setup they need.
For example, it would be nice to have tests indicate that they
need to be run on a node with USB gadget support, or on a node
with the gadget hardware from a particular vendor (e.g. a
particular SOC), or with a particular hardware phy (e.g.
Synopsis). As another example, if a test requires that the
hardware physically reboot,then that should be indicated in the
test. If a test requires that a particular button be pressed (and
that the button be available to be pressed), it should be listed.
Or if the test requires that an external node be available to
participate in the test (such as a wifi endpoint, CANbus endpoint,
or i2C device) be present, that should be indicated. There should
be a way for the test nodes which provide those hardware
capabilities, setups, or external resources to identify
themselves.

Standards should be developed for how a test node and a test can
express these capabilities and requirements. Also, standards need
to be developed so that a test can control those external
resources to participate in tests.Right now each test framework
handles this in its own way (if it provides support for it at
all).

I heard of a neat setup at one company where the video
output from a system was captured by another video system,
and the results analyzed automatically. This type of test
setup currently requires an enormous investment of
expertise, and possibly specialized hardware. Once such a
setup is performed in a few locations, it makes much more
sense to direct tests that need such facilities to those
locations, than it does to try to spread the expertise to
lots of different individuals (although that certainly has
value also).

For a first pass, I think the kernel CONFIG variables needed
by a test should be indicated, and they could be compared
with the config for the device under test. This would be a
start on the expression of the dependencies between a test
and the features of the test node.

2) How do you connect people who are interested in a
particular test with a node that can perform that test?

My proposal here is simple - for every subsystem of the
kernel, put a list of test nodes in the MAINTAINERS file, to
indicate nodes that are available to test that subsystem.
Tests can be scheduled to run on those nodes, either
whenever new patches are received for that sub-system, or
when a bug is encountered and developers for that subsystem
want to investigate it by writing a new test. Tests or data
collection instructions that are now provided manually would
be converted to formal test definitions, and added to a
growing body of tests. This should help people re-use test
operations that are common. Capturing test operations that
are done manually into a script would need to be very easy
(possibly itself automated), and it would need to be easy to
publish the new test for others to use.

Basically, in the future, it would be nice if when a person
reported a bug, instead of the maintainer manually walking
someone through the steps to identify the bug and track down
the problem, they could point the user at an existing test
that the user could easily run.

I imagine a kind of "test app store", where a tester can
select from thousands of tests according to their interest.
Also, people could rate the tests, and maintainers could
point people to tests that are helpful to solve specific
problems.

3) How does an individual know how to execute a test and how
to interpret the results?

For many features or sub-systems, there are existing tools
(e.g bonnie for filesystem tests, netperf for networking
tests, or cyclictest for realtime), but these tools have a
variety of options for testing different aspects of a
problem or for dealing with different configurations or
setups. Online you can find tutorials for running each of
these, and for helping people interpret the results. A new
test system should take care of running these tools with the
proper command line arguments for different test aspects,
and for different test targets ('device-under-test's).

For example, when someone figures out a set of useful
arguments to cyclictest for testing realtime on a beaglebone
board, they should be able to easily capture those arguments
to allow another developer using the same board to easily
re-use those test parameters, and interpret the cylictest
results, in an automated fashion. Basically we want to
automate the process of finding out "what options do I use
for this test on this board, and what the heck number am I
supposed to look at in this output, and what should its
value be?".

Another issue is with interpretation of test results from
large test suites. One notorious example of this is LTP.
It produces thousands of results, and almost always produces
failures or results that can be safely ignored on a
particular board or in a particular environment. It requires
a large amount of manual evaluation and expertise to
determine which items to pay attention to from LTP. It
would be nice to be able to capture this evaluation, and
share it with others with either the same board, or the same
test environment, to allow them to avoid duplicating this
work.

Of course, this should not be used to gloss over bugs in LTP
or bugs that LTP is reporting correctly and actually need to
be paid attention to.

4) How should this test collateral be expressed, and how
should it be collected, stored, shared and re-used?

There are a multitude of test frameworks available. I am
proposing that as a community we develop standards for test
packaging which include this type of information (test
dependencies, test parameters, results interpretation). I
don't know all the details yet. For this reason I am coming
to the community see how others are solving these problems
and to get ideas for how to solve them in a way that would
be useful for multiple frameworks. I'm personally working
on the Fuego test framework - see http://fuegotest.org/wiki,
but I'd like to create something that could be used with any
test framework.

5) How to trust test collateral from other sources (tests,
interpretation)

One issue which arises with this type of sharing (or with
any type of sharing) is how to trust the materials involved.
If a user puts up a node with their own hardware, and trusts
the test framework to automatically download and execute a
never-before-seen test, this creates a security and trust
issue. I believe this will require the same types of
authentication and trust mechanisms (e.g. signing,
validation and trust relationships) that we use to manage
code in the kernel.

I think this is more important than it sounds. I think the
real value of this system will come when tens of thousands
of nodes are running tests where the system owners can
largely ignore the operation of the system, and instead the
test scheduling and priorities can be driven by the needs of
developers and maintainers who the test node owners have
never interacted with.

Finally,
6) What is the motivation for someone to run a test
on their hardware?

Well, there's an obvious benefit to executing a test if you
are personally interested in the result. However, I think
the benefit of running an enormous test system needs to be
de-coupled from that immediate direct benefit. I think we
should look at this the same way we look at other
crowd-sourced initiatives, like Wikipedia. While there is
some small benefit for someone producing an individual page
edit, we need to move beyond that to the benefit to the
community of the cumulative effort.

I think that if we want tens of thousands of people to run
tests, then we need to increase the cost/benefit ratio for
the system. First, you need to reduce the cost so that it
is very cheap, in all of [time|money|expertise| ongoing
attention], to set up and maintain a test node. Second,
there needs to be a real benefit that people can measure
from the cumulative effect of participating in the system.
I think it would be valuable to report bugs found and fixed
by the system as a whole, and possibly to attribute positive
results to the output provided by individual nodes. (Maybe
you could 'game-ify' the operation of test nodes.)

Well, if you are still reading by now, I appreciate it. I
have more ideas, including more details for how such a
system might work, and what types of things it could
accomplish. But I'll save that for smaller groups who might
be more directly interested in this topic.

To get started, I will begin working on a prototype of a
test packaging system that includes some of the ideas
mentioned here: inclusion of test collateral, and package
validation. I would also like to schedule a "test summit"
of some kind (maybe associated with ELC or Linaro Connect,
or some other event), to discuss standards in the area I
propose.

I welcome any response to these ideas. I plan to discuss
them at the upcoming test framework mini-jamboree in Tokyo
next week, and at Plumbers (particularly during the 'testing
and fuzzing' session) the week following. But feel free to
respond to this e-mail as well.

Thanks.
 -- Tim Bird

Ideas related to the vision

Capturing tests easily

	It should be easy to capture a command line sequence, and test the
results

	It might be nice to do an automated capture of command output,
and format the output into a clitest file that
can be used as a here document inside a Fuego test script.

Test definition or attributes

	Do test definitions need to be board-specific

	Elements of test definition:

	Test dependencies:

	Kernel config values needed

	Kernel features needed:

	proc filesystem

	sys filesystem

	trace filesystem

	Test hardware needed

	Test node setup features

	ability to reboot the board

	ability to soft-reset the board

	ability to install a new kernel

	Presence of certain programs on target

	bc

	top, ps, /bin/sh, bash?

	Fuego already has:

	CAPABILITIES?

	pn and reference logs

	positive and negative result counts (specific to board)

	test specs indicate parameters for the test

	test plans indicate different profiles (method to match test to
test environment - e.g. filesystem test with type of filesystem
hardware)

Test app store

It would be nice to have an “Test Store”, similar to an “App Store”,
where tests can be made publicly available, and browsed and installed by
test developers, based on their needs.

Here are some of the items needed for this project:

	Need a repository where tests can be downloaded

	similar to a Jenkins plugin repository

	or similar to a Debian package feed

	Need a client for browsing tests, installing tests, updating tests

	It might be possible to store tests in github, and just refer to
different tests in different git repositories?

	It would be nice to have test ratings, including user
feedback on tests

	It would be nice to hae test metrics (e.g. how many bugs has the
test found)

Authenticating tests

It is important, if you have a public repository of tests, that you
introduce an element of trust and authentication to the repository to
avoid malicious actions. You may want to have an authority review the
test and possibly sign it. An open question would be who would be the
trusted authority (Fuego maintainers? This would turn into a
bottleneck).

Test system metrics

It is useful for a test system to provide information about the number
of bugs that a test system finds and that get fixed in upstream
software. Also, a test system will find bugs in test programs and in
itself. These should be noted as well.

Test Specs and Plans

Note

This page describes (among other things) the standalone test
plan feature, which is in process of being converted to a new
system. The information is still accurate as of November 2020
(and Fuego version 1.5). However, standalone testplans are
now deprecated. The testplan system is being refactored and
testplan json data is being integrated into a new batch test
system introduced in Fuego version 1.5. See
Using Batch Tests for more information.

Introduction

Fuego provides a mechanism to control test execution using something
called “test specs” and “test plans”. Together, these allow for
customizing the invocation and execution of tests in the system. A
test spec lists variables, with their possible values for different
test scenarios, and the test plan lists a set of tests, and the set of
variable values (the spec) to use for each one.

There are numerous cases where you might want to run the same test
program, but in a different configuration (i.e. with different
settings), in order to measure or test some different aspect of the
system. This is often referred to as test “parameterization”.
One of the simplest different types of test settings you might
choose is whether to run a quick test or a thorough (long) test.
Selecting between quick and long is a high-level concept, and
corresponds to the concept of a test plan. The test plan selects
different arguments, for the tests that this makes sense for.

For example, the arguments to run a long filesystem stress test, are
different than the arguments to run a long network benchmark test.
For each of these individual tests, the arguments will be different
for different plans.

Another broad category of test difference is what kind of hardware
device or media you are running a filesystem test on. For example,
you might want to run a filesystem test on a USB-based device, but the
results will likely not be comparable with the results for an
MMC-based device. This is due to differences in how the devices
operate at a hardware layer and how they are accessed by the system.
Therefore, depending on what you are trying to measure, you may wish
to measure only one or another type of hardware.

The different settings for these different plans (the test variables
or test parameters) are stored in the
test spec file. Each test in the system has a test spec file, which
lists different specifications (or “specs”) that can be incorporated
into a plan. The specs list a set of variables for each spec. When a
testplan references a particular spec, the variable values for that
spec are set by the Fuego overlay generator during the test execution.

In general, test plan files are global and have the names of
categories of tests.

Note

Note that a spec mentioned in a test plan may not be
available every test. In fact the only spec that is
guaranteed to be available in every test is the ‘default’
test spc. It is important for the user to recognize which
test specs and plan arguments may be suitably used with which
tests.

Test plans

The Fuego “test plan” feature is provided as an aid to organizing
testing activities.

There are only a few “real” testplans provided in Fuego (as of early
2019). There is a “default” testplan, which includes a smattering of
different tests, and some test plans that allow for selecting between
different kinds of hardware devices that provide file systems. Fuego
includes a number of different file system tests, and these plans
allow customizing each test to run with filesystems on either USB,
SATA, or MMC devices.

These test plans allow this selection:

	testplan_usbstor

	testplan_sata

	testplan_mmc

These plans select test specs named: ‘usb’, ‘sata’, and ‘mmc’
respectively.

Fuego also includes some test-specific test plans (for the
Functional.bc and Functional.hello_world tests), but these are
there more as examples to show how the test plan and spec system works,
than for any real utility.

A test plan is specified by a file in JSON format, that indicates the
test plan name, and a list of tests. For each test, it also lists the
specs which should be used for that test, when run with this plan. The
test plan file should have a descriptive name starting with ‘testplan_’
and ending in the suffix ‘.json’, and the file must be placed in the
overlays/testplans directory.

Example

The test program from the hello_world test allows for selecting
whether the test succeeds, always fails, or fails randomly. It does
this using a command line argument.

The Fuego system includes test plans that select these different
behaviors. These test plan files are named:

	testplan_default.json

	testplan_hello_world_fail.json

	testplan_hello_world_random.json

Here is testplan_hello_world_random.json

{
 "testPlanName": "testplan_hello_world_random",
 "tests": [
 {
 "testName": "Functional.hello_world",
 "spec": "hello-random"
 }
]
 }

Testplan Reference

A testplan can include several different fields, at the “top” level of
the file, and associated with an individual test. These are described
on the page: Testplan_Reference:Testplan Reference

Test Specs

Fuego’s “test spec” system is a mechanism for running Fuego tests
in a “parameterized” fashion. That is, you can run the same underlying
test program, but with different values for variables that are passed
to the test (the test “parameters”, in testing nomenclature).
Each ‘spec’ that is defined for a test may also be referred to
as a test ‘variant’ - that is, a variation on the basic operation
of the test.

Each test in Fuego should have a ‘test spec’ file, which lists
different specifications or variants for that test. For each ‘spec’
(or variant), the configuration declares the variables that are
recognized by that test, and their values. Every test is required to
define a “default” test spec, which is the default set of test
variables used when running the test. Note that a test spec is
not required to define any test variables, and this is the case for
many ‘default’ test specs for tests which have no variants.

The set of variables, and what they contain is highly test-specific.
In some cases, a test variable is used to configure different command
line options for the test program. In other cases, the variable
may be used by fuego_test.sh to change how test preparation
is done, or to select different hardware devices or file systems
for the test to operate on.

The test spec file is in JSON format, and has the name “spec.json”.

The test spec file is placed in the test’s home directory, which is
based on the test’s name: /fuego-core/tests/$TESTNAME/spec.json

Example

The Functional.hello_world test has a test spec that provides
options for executing the test normally (the ‘default’ spec), for
always failing (the ‘hello-fail’ spec), or for succeeding or failing
randomly (the ‘hello-random’ spec)

This test spec file for the ‘hello_world’ test is
fuego-core/tests/Functional.hello_world/spec.json

Here is the complete spec for this test:

{
 "testName": "Functional.hello_world",
 "specs": {
 "hello-fail": {
 "ARG":"-f"
 },
 "hello-random": {
 "ARG":"-r"
 },
 "default": {
 "ARG":""
 }
 }
}

During test execution, the variable $FUNCTIONAL_HELLO_WORLD_ARG will be
set to one of the three values shown (nothing, ‘-f’ or ‘-r’), depending
on which is spec used when the test is run.

In Fuego, the spec to use with a test can be specified multiple
different ways:

	as part of the Jenkins job definiton

	on the ftc run-test command line

	as part of a testplan definition

Variable use during test execution

Variables from the test spec are expanded by the overlay generator
during test execution. The variables declared in the test spec files
may reference other variables from the environment, such as from the
board file, relating to the toolchain, or from the fuego system
itself.

The name of the variable is appended to the end of the test name to
form the environment variable that is used by the test. The environment
variable name is converted to all uppercase. This environment
variable can be used in the fuego_test.sh as an argument to the
test program, or in any other way desired.

Example

In this hello-world example, the program invocation (by
fuego_test.sh) uses the variable $FUNCTIONAL_HELLO_WORLD_ARG.
Below is an excerpt from
/fuego-core/tests/Functional.hello_world/fuego_test.sh.

function test_run {
 report "cd $BOARD_TESTDIR/fuego.$TESTDIR; ./hello $FUNCTIONAL_HELLO_WORLD_ARG"
}

Note that in the default spec for hello_world, the variable (‘ARG’ in
the test spec) is left empty. This means that during execution of
this test with testplan_default, the program ‘hello’ is called with no
arguments, which will cause it to perform its default operation. The
default operation for the ‘hello’ program is to write “Hello World” and
a test result of “SUCCESS”, and then exit successfully.

Specifying failure cases

A test spec file can also specify one or more failure cases. These
represent string patterns that Fuego scans for in the test log, to
detect error conditions indicating that the test failed. The syntax
for this is described next.

Example of fail case

The following example of a test spec (from the Functional.bc test),
shows how to declare an array of failure tests for this test.

There should be an variable named “fail_case” declared in test test
spec JSON file, and it should consist of an array of objects, each one
specifying a ‘fail_regexp’ and a ‘fail_message’, with an optional
variable (use_syslog) indicating to search for the item in the system
log instead of the test log.

The regular expression is used with grep to scan lines in the test
log. If a match is found, then the associated message is printed, and
the test is aborted.

{
 "testName": "Functional.bc",
 "fail_case": [
 {
 "fail_regexp": "some test regexp",
 "fail_message": "some test message"
 },
 {
 "fail_regexp": "Bug",
 "fail_message": "Bug or Oops detected in system log",
 "use_syslog": 1
 }
],
 "specs":
 [
 {
 "name":"default",
 "EXPR":"3+3",
 "RESULT":"6"
 }
]
}

These variables are turned into environment variables by the overlay
generator and are used with the function
fail_check_cases which is called during
the ‘post test’ phase of the test.

Note that the above items would be turned into the following
environment variables internally in the fuego system:

	FUNCTIONAL_BC_FAIL_CASE_COUNT=2

	FUNCTIONAL_BC_FAIL_PATTERN_0=”some test regexp”

	FUNCTIONAL_BC_FAIL_MESSAGE_0=”some test message”

	FUNCTIONAL_BC_FAIL_PATTERN_1=”Bug”

	FUNCTIONAL_BC_FAIL_MESSAGE_1=”Bug or Oops detected in system log”

	FUNCTIONAL_BC_FAIL_1_SYSLOG=true

Catalog of current plans

Fuego, as of January 2017, only has a few testplans defined.

Here is the full list:

	testplan_default

	testplan_mmc

	testplan_sata

	testplan_usbstor

	testplan_bc_add

	testplan_bc_mult

	testplan_hello_world_fail

	testplan_hello_world_random

The storage-related testplans (mmc, sata, and usbstor) allow the test
spec to configure the appropriate following variables:

	MOUNT_BLOCKDEV

	MOUNT_POINT

	TIMELIMIT

	NPROCS

Both the ‘bc’ and ‘hello_world’ testplans are example testplans to
demonstrate how the testplan system works.

The ‘bc’ testplans are for selecting different operations to test in
‘bc’. The ‘hello_world’ testplans are for selecting different results
to test in ‘hello_world’

parser.py

PROGRAM

parser.py

DESCRIPTION

parser.py is a Python program that is used by each test to parse the
test log for a test run, check the threshold(s) for success or
failure, and store the data used to generate charts.

Each benchmark should include an executable file called ‘parser.py’ in
its test home directory
(/fuego-core/tests/Benchmark.<testname>). Functional tests
may also provide a parser.py, when they return more than a single
testcase result from the test. However, this is optional. If a
Functional test does not have a parser.py script, then a generic one
is used (called generic_parser.py), that just sets the result for
the test based on the return code from the test program and the single
result from running log_compare in the test_processing portion
of the test script.

The overall operation of parser.py is as follows: parser.py
reads the test log for the current run and parses it, extracting one or
more testcase or measure results. These are stored in a python
dictionary which is passed to the results processing engine. Normally
the parsing is done by scanning the log using simple regular
expressions. However, since this is a python program, an arbitrarily
complex parser can be written to extract the result data from the test
log.

Outline

The program usually has the following steps:

	Import the parser library

	Specify a search pattern for finding one or more measurements (or
testcases) from the test log

	Call the parse_log function, to get a list of
matches for the search pattern

	Build a dictionary of result values

	Call the process function.

	The process function evaluates the results from the test, and
determines the overall pass/fail status of a test, based on a
criteria.json file

	The process function also saves the information
to the aggregate results file for this test (flat_plot_data.txt),
and re-generates the chart data for the test
(flot_chart_data.json).

Testcase and measure names

The parser.py program provides the name for the measures and
testcases read from the test log file. It also provides the result
values for these items, and passes the parsed data values to the
processing routine.

These test names must be consistent in the parser.py program,
reference.json file and the criteria.json file.

Please see Fuego naming rules for rules and guidelines
for test names in the Fuego system.

SAMPLES

Here is a sample parser.py that does simple processing of a single
metric. This is for Benchmark.Dhrystone.

Note the two calls to parser library functions: parse_log() and
process().

#!/usr/bin/python

import os, re, sys

sys.path.insert(0, os.environ['FUEGO_CORE'] + '/scripts/parser')
import common as plib

regex_string = "^(Dhrystones.per.Second:)(\ *)([\d]{1,8}.?[\d]{1,3})(.*)$"

measurements = {}
matches = plib.parse_log(regex_string)

if matches:
 measurements['default.Dhrystone'] = [{"name": "Score", "measure" : float(matches[0][2])}]

sys.exit(plib.process(measurements))

ENVIRONMENT and ARGUMENTS

parser.py uses the following environment variable:

	FUEGO_CORE

This is used to add /fuego-core/scripts/parser to the python
system path, for importing the common.py module (usually as
internal module name ‘plib’).

The parser library expects the following environment variables to be set:

	FUEGO_RW

	FUEGO_RO

	FUEGO_CORE

	NODE_NAME

	TESTDIR

	TESTSPEC

	BUILD_NUMBER

	BUILD_ID

	BUILD_TIMESTAMP

	PLATFORM

	FWVER

	LOGDIR

	FUEGO_START_TIME

	FUEGO_HOST

	Reboot

	Rebuild

	Target_PreCleanup

	WORKSPACE

	JOB_NAME

parser.py is called with the following invocation, from
function_processing:

run_python $PYTHON_ARGS $FUEGO_CORE/tests/${TESTDIR}/parser.py

SOURCE

Located in fuego-core/tests/$TESTDIR/parser.py.

SEE ALSO

	parser_func_parse_log, parser_func_process

	function_processing, Parser module API, Benchmark_parser_notes.

criteria.json

Introduction

The criteria.json file is used to specify the criteria used to
determine whether a test has passed or failed. The data and
directives in a criteria.json file (referred to as the criteria
data) allow Fuego to interpret test results and indicate ultimate
success or failure of a test.

A test usually produces a number of individual testcase results or
measurement values from the execution of the test. For functional
tests, the criteria data can include the number of testcases in the
test that must “PASS” or that may be allowed to “FAIL”. Or the
criteria data can indicate specific testcase results that should be
ignored. For benchmark tests, the criteria data includes threshold
values for measurements taken by the benchmark, as well as operations
(e.g. ‘less than’ or ‘greater than’), to use to determine if the value
of a measurement should be interpreted as a “PASS” or a “FAIL”. Fuego
uses the results of the test along with the criteria data, to
determine the final top-level result of the test.

If no criteria.json file is provided, then a default is constructed
based on the test results, consisting of the following:

{
 'tguid': <test_set_name>
 'max_fail': 0
}

Types of tests and pass criteria

A simple functional test runs a short sequence of tests, and if any
one of them fails, then the test is reported as a failure. Since this
corresponds to the default criteria.json, then most simple
Functional tests do not need to provide a criteria.json file.

A complex functional test (such as LTP or glib) has hundreds or
possibly thousands of individual test cases. Such tests often have
some number of individual test cases that fail, but which may be
safely ignored (either temporarily or permamently). For example, some
test cases may fail sporadically due to problems with the test
infrastructure or environment. Other tests may fail due to
configuration choices for the software on the board. (For example, a
choice of kernel config may cause some tests to fail - but this is
expected and these fail results should be ignored).

Functional tests that are complex require a criteria.json file, to
avoid failing the entire test because of individual testcases that
should be ignored.

Finally, a Benchmark test is one that produces one or more
“measurements”, which are test results with numeric values. In order
to determine whether a result indicates a PASS or a FAIL result, Fuego
needs to compare the numeric result with some threshold value. The
criteria.json file holds the threshold value and operator used for
making this comparison.

Different boards, or boards with different software installations or
configurations, may require different pass criteria for the same
tests. Therefore, the pass criteria are broken out into a separate
file that can be adjusted at each test site, and for each board.
Ultimately, we would like testers to be able to share their pass
criteria, so that each Fuego user does not have to determine these on
their own.

Evaluation criteria

The criteria file lists “pass criteria” for test suites, test sets,
test cases and measures. A single file may list one or more pass
criteria for the test.

The criteria file may include count-based pass criteria, specific
testcase lists, and measure reference values (thresholds).

The criteria file specifies the pass criteria for one or more test
element results, by specifying the element’s test id (or tguid), and
the criterion used to evaluate that element. Some results elements,
such as test sets, are aggregates of other elements. For these, the
criteria specify attributes of their child elements (like required
counts, or listing individual children that must pass or fail).

The criteria file consists of a list of criterion objects (JSON
objects), each of which specifies the tguid for the result element of
the test, and additional data used to evaluate that element. tguids
are generated by Fuego during the processing phase, and consist of
statically defined strings unique to each test. You should look at a
test’s run.json file to see the test element names for a test.

Here are the different operations that can be used for criteria:

	max_fail - specifies the maximum number of child elements that can
fail, before causing this element to fail

	by default, every aggregate element must have all it’s children pass,
in order for it to pass (corresponding to a ‘max_fail’ of 0)

	min_pass - specifies the minimum number of child elements that must pass,
in order for this element to pass

	must_pass_list - specifies a list of child elements, by name, that must pass
for this element to pass

	fail_ok_list - specifies a list of child elements, by name, that may fail,
without causing this element to fail

	reference - specifies a reference value used as a threshold to evaluate where a
number value for this element represents pass or fail.

	the reference object has two sub-attributes:

	value - the reference value (threshold)

	operator - the test between the result and the reference value

The operator can be one of the following strings:

	gt - result must be greater than the reference value

	ge - result must be greater than or equal to the reference value

	lt - result must be less than the reference value

	le - result must be less than or equal to the reference value

	eq - result must equal the reference value

	ne - result must not equal the reference value

	bt - result is between two reference values (or equal to one of them)

In case the reference object has an operator of ‘bt’, the ‘value’
field should have a string consisting of two numbers separated by a
‘,’. For example, to indicate that the result value should be between
4 and 5, the ‘value’ field should have the string “4,5”. Note that
the comparison for ‘between’ also succeeds for equality. So in the
example case of a reference value of “4,5”, the test would pass if the
test result was exactly 4, or exactly 5, or any number between 4 and
5.

Note

The equality and inequality operators (‘eq’ and ‘ne’) are less likely
to be useful for numerical evaluations of most benchmark measures, but are
provided for completeness. These are useful if a test reports numerical results
from within a small set of numbers (like 0 and 1).

Customizing the criteria.json file for a board

A Fuego user can customize the pass criteria for a board, by making a
copy of the criteria.json file, manually editing the contents, and
putting it in a specific directory with a specific filename, so Fuego
can find it.

Using an environment variable

A Fuego user can specify their own path to the criteria file to use
for a test using the environment variable
FUEGO_CRITERIA_JSON_PATH. This can be set in the environment
variables block in the Jenkins job for a test, if running the Fuego
test from Jenkins, or in the shell environment prior to running a
Fuego test using ‘ftc’.

For example, the user could do the following:

	$ export FUEGO_CRITERIA_JSON_PATH=/tmp/my-criteria.json

	$ ftc run-test -b board1 -t Functional.foo

Using a board-specific directory

More commonly, a user can specify a board-specific criteria file, by
placing the file under either /fuego-rw/boards or
/fuego-ro/boards

When Fuego does test evaluation, it searches for the the criteria file
to use, by looking for the following files in the indicated order:

	$FUEGO_CRITERIA_JSON_PATH

	/fuego-ro/boards/{board}-{testname}-criteria.json

	/fuego-rw/boards/{board}-{testname}-criteria.json

	/fuego-core/tests/{testname}/criteria.json

As an example, a user could customize the criteria file as follows:

	$ cp /fuego-core/tests/Benchmark.Dhrystone/criteria.json /fuego-rw/boards/board1-Benchmark.Dhrystone-criteria.json

	$ edit /fuego-rw/boards/board1-Benchmark.Dhrystone-criteria.json

	Alter the reference value for the tguid ‘default.Dhrystone.Score’ to reflect a value
appropriate for their board (‘board1’ in this example)

	(execute the job ‘board1.default.Benchmark.Dhrystone’ in Jenkins)

	Fuego will use the criteria file for board1 in /fuego-rw instead of the
default criteria.json file in the test’s home directory

Examples

Here are some example criteria.json files:

Benchmark.dbench

{
 "schema_version":"1.0",
 "criteria":[
 {
 "tguid":"default.dbench.Throughput",
 "reference":{
 "value":100,
 "operator":"gt"
 }
 },
 {
 "tguid":"default.dbench",
 "min_pass":1
 }
]
}

The interpretation of this criteria file is that the measured value of
dbench.Throughput (the result value) must have a value greater than
100. Also, at least 1 measure under the default.dbench test must
pass, for the the entire test to pass.

Simple count

{
 "schema_version":"1.0",
 "criteria": [
 {
 "tguid": "default",
 "max_fail": 2
 },
}

The interpretation of this criteria file is that the test may fail up to 2
individual test cases, under the default test set, and still pass.

Child results

{
 "schema_version":"1.0",
 "criteria": [
 {
 "tguid": "syscall",
 "min_pass": 1000,
 "max_fail": 5
 },
 {
 "tguid": "timers",
 "fail_ok_list": ["leapsec_timer"]
 },
 {
 "tguid": "pty",
 "must_pass_list": ["hangup01"]
 }
]
}

The interpretation of this criteria file is that, within the syscall
test set, a minimum of 1000 testcases must pass, and no more than 5
fail, in order for that set to pass. Also, in the test set timers,
if the testcase leapsec_timer fails, it will not cause the entire
test to fail. However, in the test set pty, the testcase hangup01
must pass for the entire test to pass.

Schema

The schema for the criteria.json file is contained in the
fuego-core repository at:
scripts/parser/fuego-criteria-schema.json.

Here it is (as of Fuego 1.2):

{
 "$schema":"http://json-schema.org/schema#",
 "id":"http://www.fuegotest.org/download/fuego_criteria_schema_v1.0.json",
 "title":"criteria",
 "description":"Pass criteria for a test suite",
 "definitions":{
 "criterion":{
 "title":"criterion ",
 "description":"Criterion for deciding if a test (test_set, test_case or measure) passes",
 "type":"object",
 "properties":{
 "tguid":{
 "type":"string",
 "description":"unique identifier of a test (e.g.: Sequential_Output.CPU)"
 },
 "min_pass":{
 "type":"number",
 "description":"Minimum number of tests that must pass"
 },
 "max_fail":{
 "type":"number",
 "description":"Maximum number of tests that can fail"
 },
 "must_pass_list":{
 "type":"array",
 "description":"Detailed list of tests that must pass",
 "items":{
 "type":"string"
 }
 },
 "fail_ok_list":{
 "type":"array",
 "description":"Detailed list of tests that can fail",
 "items":{
 "type":"string"
 }
 },
 "reference":{
 "type":"object",
 "description":"Reference measure that is compared to a result measure to decide the status",
 "properties":{
 "value":{
 "type":[
 "string",
 "number",
 "integer"
],
 "description":"A value (often a threshold) to compare against. May be two numbers separated by a comma for the 'bt' operator."
 },
 "operator":{
 "type":"string",
 "description":"Type of operation to compare against",
 "enum":[
 "eq",
 "ne",
 "gt",
 "ge",
 "lt",
 "le",
 "bt"
]
 }
 },
 "required":[
 "value",
 "operator"
]
 }
 },
 "required":[
 "tguid"
]
 }
 },
 "type":"object",
 "properties":{
 "schema_version":{
 "type":"string",
 "description":"The version number of this JSON schema",
 "enum":[
 "1.0"
]
 },
 "criteria":{
 "type":"array",
 "description":"A list of criterion items",
 "items":{
 "$ref":"#/definitions/criterion"
 }
 }
 },
 "required":[
 "schema_version",
 "criteria"
]
}

Compatibility with previous Fuego versions

The criteria.json file replaces the reference.log file that was
used in versions of Fuego prior to 1.2. If a test is missing a
criteria.json file, and has a reference.log file, then Fuego will
read the reference.log file and use its data as the the pass
criteria for the test.

Previously, Fuego (and it’s predecessor JTA) supported pass criteria
functionality in two different ways:

	Functional test pass/fail counts

	Benchmark measure evaluations

Functional test pass/fail counts

For functional tests counts of positive and negative results were
either hard-coded into the base scripts for the test, as arguments to
the log_compare() in each test’s test_processing() function, or they
were specified as variables, read from the board file, and applied in
the test_processing() function.

For example, the Functional.OpenSSL test used values of 176 pass and
86 fails (see
fuego-core/tests/Functional.OpenSSL/OpenSSL.sh in
fuego-1.1) to evaluate the result of this test.

log_compare "$TESTDIR" "176" "${P_CRIT}" "p"
log_compare "$TESTDIR" "86" "${N_CRIT}" "n"

But tests in JTA, such as Functional.LTP.Open_Posix expected
the variables LTP_OPEN_POSIX_SUBTEST_COUNT_POS and
LTP_OPEN_POSIX_SUBTEST_COUNT_NEG to be defined in a the board
file for the device under test.

For example, the board file might have lines like the following:

LTP_OPEN_POSIX_SUBTEST_COUNT_POS="1232"
LTP_OPEN_POSIX_SUBTEST_COUNT_NEG="158"

These were used in the log_compare function of the base script of the
test like so:

log_compare "$TESTDIR" $LTP_OPEN_POSIX_SUBTEST_COUNT_POS "${P_CRIT}" "p"
log_compare "$TESTDIR" $LTP_OPEN_POSIX_SUBTEST_COUNT_NEG "${N_CRIT}" "n"

Starting with Fuego version 1.2, these would be replaced with
criteria.json files like the following:

For Functional.OpenSSL:

{
 "schema_version":"1.0",
 "criteria":[
 'tguid': 'OpenSSL',
 'min_pass': 176,
 'max_fail': 86
]
}

For Functional.LTP.Open_Posix:

{
 "schema_version":"1.0",
 "criteria":[
 'tguid': 'LTP.Open_Posix',
 'min_pass': 1232,
 'max_fail': 158
]
}

FIXTHIS - should there be 'default' somewhere in the preceding tguids?

Benchmark measure evaluations

For Benchmark programs, the pass criteria consists of one or more
measurement thresholds that are compared with the results produced by
the Benchmark, along with the operator to be used for the comparison.

In JTA and Fuego 1.1 this data was contained in the
reference.log file.

Coding Style

This page described the coding style conventions used in Fuego.

Please adhere to these conventions, so that the code has a more
uniform style and it is easier to maintain. Not all code in Fuego
adheres to these styles. As we work on code, we will convert it to the
preferred style over time. New code should adhere to the preferred
style.

Fuego code consists mostly of shell script and python code.

Indentation and line length

We prefer indentation to be 4 spaces, with no tabs.

It is preferred to keep lines within 80 columns. However, this is not
strict. If a string constant causes a line to run over 80 columns,
that is OK.

Some command sequences passed to the ‘report’ function may be quite
long and require that they be expressed on a single line. In that
case, you can break them up onto multiple lines using shell
continuation lines.

Trailing whitespace

Lines should not end in trailing whitespace. That is: ‘grep ” $” *’
should always be empty.

You can do this with: ‘grep -R ” $” *’ in the directory you’re working
in, and fix the lines manually.

Or, another method, if you’re using vim, is to add an autocmd to your
.vimrc to automatically remove whitespace from lines that you edit.

This line in your ~/.vimrc:

autocmd FileType sh,c,python autocmd BufWritePre <buffer> %s/\s\+$//e

automatically removes whitespace from all line endings in shell, C,
and python files that are saved from vim.

Or, a third method of dealing with this automatically is to have git
check for whitespace errors using a configuration option, or a hook.
See

https://stackoverflow.com/questions/591923/make-git-automatically-remove-trailing-whitespace-before-committing#592014

Also, script files should not end in blank lines.

Shell features

Shell scripts which run on the device-under-test (DUT or board),
SHOULD restrict themselves to POSIX shell features only. Do not
assume you have any shell features on the target board outside of
those supported by ‘busybox ash’.

Try running the program checkbashisms on your target-side code, to
check for any non-POSIX constructs in the code.

The code in fuego_test.sh is guaranteed to run in bash, and may
contain bashisms, if needed. If equivalent functionality is available
using POSIX features, please use those instead. Please avoid esoteric
or little-known bash features. (Or, if you use such features, please
comment them.)

Another useful tool for checking your shell code is a program called
‘ShellCheck’. See https://github.com/koalaman/shellcheck.
Most distributions have a package for shellcheck.

There are a few conventions for avoiding using too many external
commands in shell scripts that execute on the DUT. To check for a
process, use ps and grep, but to avoid having grep find
itself, use a wildcard in the search pattern. Like so: ‘ps | grep
[f]oo’ (rather than ‘ps | grep foo | grep -v grep’).

Python style

Python code (such as parser code, the overlay generator, ftc and other
helper scripts), should be compliant with
https://www.python.org/dev/peps/pep-0008/. As with shell code,
there is a lot of legacy code in Fuego
that is not currently compliant with PEP 8. We will convert legacy
code to the correct style as changes are made over time.

Here are a few more conventions for Fuego code:

	Strings consisting of a single character should be declared use single-quotes

	Strings consisting of multiple characters should declared using double-quotes,
unless the string contains a double-quote. In that case, single-quotes should
be using for quoting, to avoid having to escape the double-quote.

Note that there is a fuego lint test (selftest), called
Functional.fuego_lint. It only checks a few files at the moment, but
the plan is to expand it to check additional code in the future.

Testplan Reference

In Fuego, a testplan is used to specify a set of tests to execute, and
the settings to use for each one.

Filename and location

A testplan is in json format, and can be located in two places:

	As a file located in the directory fuego-core/overlay/testplans.

	As a here document embedded in a batch test script
(fuego_test.sh)

A testplan file name should start with the prefix “testplan_”, and end
with the extension “.json”.

A testplan here document should be preceded by a line starting with
BATCH_TESTPLAN= and followed by a line starting with “END_TESTPLAN”.

Top level attributes

The top level objects that may be defined in a testplan are:

	testPlanName

	tests

	default_timeout

	default_spec

	default_reboot

	default_rebuild

	default_precleanup

	default_postcleanup

Each of these attributes, except for ‘tests’ has a value that is a string.
Here are their meanings and legal values:

The testPlanName is the name of this testplan. It must match the
filename that holds this testplan (without the “testplan_” prefix or
“.json” extension. This object is required.

‘tests’ is a list of tests that are part of this testplan. See below
for a detailed description of the format of an element in the ‘tests’
list. This object is required.

Default test settings

The testplan may also include a set of default values for test settings.
The test settings for which defaults may be specified are:

	timeout

	spec

	reboot

	rebuild

	precleanup

	postcleanup

These values are used if the related setting is not specified in the
individual test definition.

For example, the testplan might define a default_timeout of “15m”
(meaning 15 minutes). The plan could indicate timeouts different from
this (say 5 minutes or 30 minutes) for individual tests, but if a test
in the testplan doesn’t indicate its own timout it would default to
the one specified as the default at the top level of the testplan.

The ability to specify per-plan and per-test settings makes it easier
to manage these settings to fit the needs of your Fuego board or lab.

Note that if neither the individual test nor the testplan provide
a default value is not provided, then a Fuego global default value
for that setting will be used.

Note that default_spec specifies the name of the test spec to use
for the test (if one is not is specified for the individual test
definition). The name should match a spec that is defined for every
test listed in the plan. Usually this will be something like
“default”, but it could be something that is common for a set of
tests, like ‘mmc’ or ‘usb’ for filesystem tests.

See the individual test definitions for descriptions of these
different test settings objects.

Individual test definitions

The ‘tests’ object is a list of objects, each of which indicates a
test that is part of the plan. The objects included in each list
element are:

	testName

	spec

	timeout

	reboot

	rebuild

	precleanup

	postcleanup

All object values are strings.

TestName

The ‘testName’ object has the name of a Fuego test included in this
plan. It should be the fully-qualified name of the test (that is, it
should include the “Benchmark.” or “Functional.” prefix.) This
attribute of the test element is required.

Spec

The ‘spec’ object has the name of the spec to use for this test. It
should match the name of a valid test spec for this test. If ‘spec’
is not specified, then the value of “default_spec” for this testplan
will be used.

Timeout

The timeout object has a string indicating the timeout to use for a
test. The string is positive integer followed by a single-character
units-suffix. The units suffixes available are:

	‘s’ for seconds

	‘m’ for minutes

	‘h’ for hours

	‘d’ for days

Most commonly, a number of minutes is specified, like so:

	“default_timeout” : “15m”,

If no ‘timeout’ is specified, then the value of ‘default_timeout’ for
this testplan is used.

Reboot

The ‘reboot’ object has a string indicating whether to reboot the
board prior to the test. It should have a string value of ‘true’ or
‘false’.

Rebuild

The ‘rebuild’ object has a string indicating whether to rebuild the
test software, prior to executing the test. The object value must be
a string of either ‘true’ or ‘false’.

If the value is ‘false’, then Fuego will do the following, when
executing the test:

	If the test program is not built, then build it

	If the test program is already built, then use the existing test program

If the value is ‘true’, then Fuego will do the following:

	Remove any existing program build directory and assets

	Build the program (including fetching the source, unpacking it,
and executing the instructions in the test’s “test_build” function)

Precleanup

The ‘precleanup’ flag indicates whether to remove all previous test
materials on the target board, prior to deploying and executing the test.
The object value must be a string of either ‘true’ or ‘false’.

Postcleanup

The ‘postcleanup’ flag indicates whether to remove all test materials
on the target board, after the test is executed.
The flag value must be a string of either ‘true’ or ‘false.

Test setting precedence

Note that the test settings are used by the plan at job creation time,
to set the command line arguments that will be passed to ftc run-test
by the Jenkins job, when it is eventually run.

A user can always edit a Jenkins job (for a Fuego test), to
override the test settings for that job.

The precedence of the settings encoded into the job definition at job
creation time are:

	Testplan individual test setting (highest priority)

	Testplan default setting

	Fuego default setting

The precedence of settings at job execution time are:

	‘ftc run-test’ command line option setting (highest priority)

	Fuego default setting

Fuego Test System

Welcome to Fuego!

Fuego is a test system specifically designed for embedded Linux testing.
It supports automated testing of embedded targets from a host system,
as its primary method of test execution.

Fuego consists of a host/target script engine, and over 100 pre-packages
tests. These are installed in a docker container along with a Jenkins
web interface and job control system, ready for out-of-the-box
Continuous Integration testing of your embedded Linux project., and over
100 pre-packaged

The idea is that in the simplest case, you just add your board, select
or install a toolchain, and go!

Introduction presentation

Tim Bird gave some talks introducing Fuego, at various conferences
in 2016. The slides and a video are provided below, if you want
to see an overview and introduction to Fuego.

The slides are here:
Introduction-to-Fuego-LCJ-2016.pdf [http://fuegotest.org/ffiles/Introduction-to-Fuego-LCJ-2016.pdf],
along with a
YouTube video [https://youtu.be/AueBSRN4wLk].
You can find more presentations about Fuego on our wiki at:
http://fuegotest.org/wiki/Presentations.

Getting Started

	There are a few different ways to get started with Fuego:
	
	Use the Fuego Quickstart Guide to
get Fuego up an running quickly.

	Or go through our Install and First Test
tutorial to install Fuego and run a test on a single “fake” board.
This will give you an idea of basic Fuego operations, without
having to configure Fuego for your own board

	Work through the documentation for Installation

Where to download

	Code for the test framework is available in 2 git repositories:
	
	https://bitbucket.org/fuegotest/fuego/

	https://bitbucket.org/fuegotest/fuego-core/

The fuego-core directory resides inside the fuego directory.
But normally you do not clone that repository directly. It is cloned
for you during the Fuego install process. See the
Fuego Quickstart Guide or the
Installing Fuego page for more information.

Documentation

See the index below for links to the major sections of the documentation
for Fuego. The major sections are:

	Tutorials

	Installation and Administration

	User Guides

	Developer Resources

	API Reference

Resources

Mailing list

Fuego discussions are held on the fuego mailing list:

	https://lists.linuxfoundation.org/mailman/listinfo/fuego

Note that this is a new list (as of September 2016). Previously,
discussions about Fuego (and its predecessor JTA) were held on the
ltsi-dev mailing list:

	https://lists.linuxfoundation.org/mailman/listinfo/ltsi-dev

Presentations

A number of presentations have been given on the Fuego test framework,
and related projects (such as its predecessor JTA, and a derivative
project JTA-AGL).

See the Presentations [http://fuegotest.org/wiki/Presentations]
page on the Fuego wiki for a list of presentations that you can read
or view for more information about Fuego.

Vision

The purpose of Fuego is to bring the benefits of open source to the
testing process.

It can be summed up like this:

Note

Do for testing
what open source has done for coding

There are numerous aspects of testing that are still done in an ad-hoc
and company-specific way. Although there are open source test
frameworks (such as Jenkins or LAVA), and open source test programs
(such as cylictest, LTP, linuxbench, etc.), there are lots of aspects
of Linux testing that are not shared.

The purpose of Fuego is to provide a test framework for testing
embedded Linux, that is distributed and allows individuals and
organizations to easily run their own tests, and at the same time
allows people to share their tests and test results with each other.

Historically, test frameworks for embedded Linux have been difficult to
set up, and difficult to extend. Many Linux test systems are not easily
applied in cross or embedded environments. Some very full frameworks are
either not viewed as processor-neutral, and are difficult to set up, or
are targeted at running tests on a dedicated group of boards or devices.

The vision of open source in general is one of sharing source code and
capabilities, to expand the benefits to all participants in the
ecosystem. The best way to achieve this is to have mechanisms to
easily use the system, and easily share enhancements to the system, so
that all participants can use and build on each others efforts.

The goal of Fuego is to provide a framework that any group can install
and use themselves, while supporting important features like
cross-compilation, host/target test execution, and easy test
administration. Test administration consists of starting tests (both
manually and automatically), viewing test results, and detecting
regressions. Ease of use is critical, to allow testers to use tests
that are otherwise difficult to individually set up, configure, and
interpret the results from. It is also important to make it very easy
to share tests (scripts, configuration, results parsing, and
regression detection methods).

Some secondary goals of this project are the ability for 3rd parties
to initiate or schedule tests on our hardware, and the ability to
share our test results with others.

The use of Jenkins as the core of the test framework already supports
many of the primary and secondary goals. The purpose of this project
is to augment the Jenkins system to support embedded configurations of
Linux, and to provide a place for centralized sharing of test
configurations and collateral.

There is no such thing as a “Linux Test distribution”. Fuego aims to
be this. It intends to provide test programs, a system to build,
deploy and run them, and tools to analyze, track, and visualize test
results.

For more details about a high-level vision of open source testing,
please see OSS Test Vision.

Other Resources

Historical information

http://elinux.org/Fuego has some historical information about
Fuego.

Related systems

See Other test systems for notes about other test
frameworks and comparisons between Fuego and those other systems.

Things to do

Looking for something to do on Fuego? See the Fuego wiki
for a list of projects, at:
Fuego To Do List [http://fuegotest.org/wiki/Fuego_To_Do_List]

Sandbox

This page is for testing different elements of reStructuredText markup,
in the Fuego documentation. This is intended to be used during the
conversion from wiki pages, to make sure all important formatting is
preserved.

Page Level Header (H1)

Here is some text

Chapter Level Header (H2)

This is the start of a level 2 section

Level 3 header

Does this actually do a level 3 header?

Level 4 header

Some content here at level 4

Level 5 header

Some content here at level 5

Some Example Markup

Here is a bold word, and an italic word.
Also here is a filename.txt, and a command -a arg.

Here is a glossary terms: board

Admonition test

Reference test

test 1

Sandbox2_

Here is an attempt to refer to a page: `Sandbox2`_

Result:

	cover text of `Sandbox2`_

	URL of …/_build/html/Sandbox.html#id1 - FAIL

cover text of

test 2

Pointer to slandbox page1 <sand1>_

Here is another attemp to refer to a page.
Try to refer to a section on a page, with cover text:
Pointer to slandbox page1

Result:

	cover text of Pointer to slandbox page1

	URL of …/_build/html/sand1 - FAIL

test 3

Reference: :ref:`Pointer to slandbox page3 <sndbx2>`

Here is another way to refer to a section on a page, with cover text:
Pointer to slandbox page3

Result from default Ubuntu 16.03 Sphinx:

	cover text of “Pointer to slandbox page3”

	NO URL! - FAIL

Result from python3 venv py3-sphinx Sphinx installation:

	cover text of “Pointer to slandbox page3”

	URL of …/_build/html/Sandbox2.html#sndbx2 - PASS

test 4

Reference: :ref:`Pointer to slandbox2 page4 <Sandbox2>`

Here is another way to refer to a section on a page, with cover text:
Pointer to slandbox2 page4

Result:

	cover text of Pointer to slandbox2 page4

	NO URL! - FAIL

test 5

Reference `Pointer to slandbox2 page5 <Sandbox2.html>`_

Here is another way to refer to a section on a page, with cover text:
Pointer to slandbox2 page5

Result:

	cover text of Pointer to slandbox page5

	URL = Sandbox2.html - PASS

Conclusion. There doesn’t seem to be a way to refer to a page or a
section heading on a page, unless it is marked with an anchor.
(unless you reference the page with it’s .html extension)

test 6

Reference `Pointer to slandbox2 test6 <chapheader2>`

Here is another way to refer to a section on a page, with cover text:
Pointer to slandbox2 test6

Result:

	cover text of Pointer to slandbox test6

	URL = …/_build/html/Sandbox2.html#chapheader2 - PASS

Which ways worked?

	Test 3 - worked it should have

	Test 5 - but it’s gross

	Test 6 - is preferred.

Toctree test

toctrees apparently refer to file (page) names.
The items put into the tree are the section headings from those pages

	Installing Fuego
	Overview

	Install pre-requisite software

	Overview of remaining steps

	Install the Fuego repositories

	Create the Fuego container

	Start the Fuego container

	Access the Fuego Jenkins web interface

	Access the Fuego docker command line

	Remaining steps

	Alternative installation configurations

	About Fuego

Here’s another toctree - this time with a caption

Important Pages!!

	Installing Fuego
	Overview

	Install pre-requisite software

	Overview of remaining steps

	Install the Fuego repositories

	Create the Fuego container

	Start the Fuego container

	Access the Fuego Jenkins web interface

	Access the Fuego docker command line

	Remaining steps

	Alternative installation configurations

	About Fuego

Following this is a hidden toctree

I can keep doing this all day!!

Installing Fuego

This page describes the steps to install Fuego on your Linux machine.
It includes detailed descriptions of the operations, for both users
and developers.

Tip

If you are interested in a quick outline of steps, please see
the Fuego Quickstart Guide instead.

Overview

The overview of the steps is:

	Install pre-requisite software

	Download the Fuego repository

	Build your Fuego container

	Start the container

	Access the Jenkins interface

Install pre-requisite software

To retrieve the Fuego software and create the Docker image for it, you
need to have git and Docker installed on your system.

On Ubuntu, try the following commands:

$ sudo apt-get install git
$ sudo apt-get install docker.io

These commands may be different for other distributions of Linux
(such as Fedora, RedHat, CentOS, Mint, etc.)

Overview of remaining steps

Steps 2 through 5 of the installation can be performed with the
following Linux commands:

$ git clone https://bitbucket.org/fuegotest/fuego.git
$ cd fuego
$./install.sh
$./start.sh
$ firefox http://localhost:8090/fuego

These steps and commands will be described in the sections that follow.

Install the Fuego repositories

The Fuego system is contained in 2 git repositories. One repository is
called fuego and the other is called fuego-core. The
fuego-core repository is installed inside the fuego directory, at
the top level of that repository’s directory structure. This is done
automatically during the install of Fuego. You do not need to clone the
fuego-core repository manually yourself.

The reason to have two repositories is that they
hold different pieces of the Fuego system, and this allows
for them to be upgraded independently of each other.

The repositories are hosted on bitbucket.org, under
the the fuegotest account.

Fuego repository

The fuego repository has the code and files used to build the
Fuego docker container. It also has the fuego-ro directory, which
has board definition files, various configuration files,
miscellaneous scripts, and other items which are used by Fuego
for container management or other purposes.

Fuego-core repository

The fuego-core repository has the code which implements the
core of the Fuego test execution engine, as well as the pre-packaged
tests included with the system. This includes the overlay generator,
the results parser, the Fuego shell function library, the directory
of tests, and the main Fuego command line tool ftc.

Downloading the repository

You can use git clone to download the main Fuego repository, like
so:

$ git clone https://bitbucket.org/fuegotest/fuego.git
$ cd fuego

After downloading the repositories, switch to the fuego directory,
as shown in the example.

Note that these git commands will download the ‘master’ branch of the
repository, which is the current main released version of Fuego.

Downloading a different branch

If you are experimenting with an unreleased version of Fuego
in the ‘next’ branch, then please replace the ‘git clone’ command in
the instructions above with these:

$ git clone -b next https://bitbucket.org/fuegotest/fuego.git
$ cd fuego

This uses -b next to indicate a different branch to check out during
the clone operation.

Create the Fuego container

The third step of the installation is to run install.sh to create the
Fuego docker container. While in the fuego directory,
run the script from the current directory, like so:

$./install.sh

install.sh uses Docker and the Dockerfile in the fuego directory
to create a Docker container with the Fuego Linux distribution.

This operation may take a long time. It takes about 45 minutes on my
machine. This step assembles a nearly complete distribution of
Linux, from binary packages obtained from the Internet.

This step requires Internet access. You need to make sure that
you have proxy access to the Internet if you are behind a corporate
firewall.

Please see the section “Alternative Installation Configuratons” below
for other arguments to install.sh, or for alternative installation
scripts.

Fuego Linux distribution

The Fuego Linux distribution is a distribution of Linux based on
Debian Linux, with many additional packages and tools installed.
These additional packages and tools are required for aspects of Fuego
operation, and to support host-side processes and services needed by
the tests included with Fuego.

For example, the Fuego distribution includes:

	the Jenkins continuous integration server

	the netperf server, for testing network performance.

	the ttc command, which is a tool for board farm management

	the python jenkins module, for interacting with Fuego’s Jenkins
instance

	and many other tools, programs and modules used by Fuego and its tests

Fuego commands execute inside the Fuego docker container, and Fuego
operations initiate in the container, but may access hardware (such as
USB ports, networking, or serial ports) that are outside the container.

Configuring for ‘privileged’ hardware access

In many configurations, Fuego can perform its operations using only
network operations. However, depending on the configuration of your
boards, or your lab hardware, and the relationship between your host
and target computers used for testing, you may need to access other
hardware on your host machine.

To do that, you can create a ‘privileged’ Fuego container, using
the --priv options with install.sh:

$./install.sh --priv

Customizing the privileged container

Note that using --priv causes install.sh to use a different
container creation script. Normally (in the non –priv case),
install.sh uses fuego-host-scripts/docker-create-container.sh.
When --priv is used, Fuego uses
fuego-host-scripts/docker-create-usb-privileged-container.sh.

This latter script (docker-create-usb-privileged-container.sh) can
be edited, before running install.sh, to change the set of hardware
devices that the Docker container will have privileged access to.

This is done by adding more bind mount options to the docker create
command inside this script. Explaining exactly how to do this is
outside the scope of this documentation. Please see documentation and
online resources for the Docker system for information about this.

	The script currently creates bind mounts for:
	
	/dev/bus/usb - USB ports, and newly created ports

	/dev/ttyACM0 - serial port 0

	/dev/ttyACM1 - serial port 1

	/dev/serial - general serial ports, and newly created ports

If you experience problems with Fuego accessing hardware on your host
system, you may need to build the Fuego docker container using
additional bind mounts that are specific to your configuration. Do so
by editing docker-create-used-privileged-container.sh, removing the
old container, and re-running ./install.sh --priv to build a new
container with the desired privileges.

Using an different container name

By default, install.sh creates a Docker image called fuego and a
Docker container called fuego-container. There are some situations
where it is desirable to use different names. For example, having
different container names is useful for Fuego self-testing. It can
also used to do A/B testing when migrating from one release of Fuego
to the next.

You can provide a different name for the Fuego image and container, by
supplying one on the command line for install.sh, like so:

$./install.sh my-fuego

This would create a Docker image named my-fuego and a Docker
container named my-fuego-container

Start the Fuego container

To start the Fuego docker container, use the start.sh script.

$./start.sh

Using a different container name

By default, start.sh will start the container named fuego-container
(which is the default Fuego docker container name). However, if you
created a different container name, you can specify the name
on the command line, like so:

$./start.sh my-fuego-container

When you run the start.sh, the terminal where the script
is run will be placed at a shell prompt inside the Docker container.
The session will be logged in as the root user inside the container.
The container will run until you exit this top-level shell.
Therefore, you should leave it (the shell and the terminal that your
ran start.sh from) running for the duration of your testing.

Access the Fuego Jenkins web interface

Fuego includes a version of Jenkins and a set of plugins as part of
its system. Jenkins is running inside the Fuego docker container. By
default the Fuego Jenkins interface runs on port 8090, with an URL
path /fuego.

Here is an example showing use of firefox to access the Jenkins
interface with Fuego

$ firefox http://localhost:8090/fuego

To access the Fuego interface you can use any browser - not just
Firefox.

In your browser, you should see a screen similar to the following:

[image: _images/fuego-1.1-jenkins-dashboard-new.png]
Note that this web interface is available from any machine that has
access to your host machine via the network. This means that test
operations and test results are available to anyone with access to
your machine. You can configure Jenkins with different security to
avoid this.

Access the Fuego docker command line

For some Fuego operations, it is handy to use the command line (shell
prompt) inside the Docker container. In particular, parts of the
remaining setup of your Fuego system involve running the ftc command
line tool.

Some ftc commands can be run outside the container, but other require
that you execute the command inside the container.

To start another shell prompt inside the currently running Fuego docker
container, you can use the script fuegosh. This helper script is
located at: fuego/fuego-ro/scripts/fuegosh. You may find it
convenient to copy this script to a bin directory on your system
(either /usr/local/bin or ~/bin) that is already in your PATH.

If you run fuegosh, it will place you at a shell prompt inside the
Fuego docker container, like so:

$ fuegosh
root@hostname:/#

Remaining steps

Fuego is now installed and ready for test operations. However, some
steps remain in order to use it with your hardware. You need to:

	Add one or more hardware boards (board definition files)

	Add a toolchain

	Populate the Jenkins interface with test jobs

These steps are described in subsequent sections of this documentation.

	See:
	
	Adding a Board

	Adding a Toolchain

	Adding Test Jobs to Jenkins

Alternative installation configurations

The default installation of Fuego installs the entire Fuego system,
including Jenkins and the Fuego core, into a Docker container running
on a host system, which Jenkins running on port 8090. However, it is
possible to install Fuego in other configurations.

	The configuration alternatives that are supported are:
	
	Install using a different TCP/IP port for Jenkins

	Install without the Jenkins server

	Install directly to your host (not inside a container)

With a different Jenkins TCP/IP port

By default the Fuego uses TCP/IP port 8090, but this can be changed to
another port. This can be used to avoid a conflict with a service
already using port 8090 on your host machine, or so that multiple
instances of Fuego can be run simultaneously.

To use a different port than 8090 for Jenkins, specify it after the
image name on the command line when you run install.sh. Note that this
means that you must specify a Docker image name in order to specify a
non-default port. For example:

$./install.sh fuego 7777

This would install Fuego, with an Docker image name of fuego, a
Docker container name of fuego-container, and with Jenkins
configured to run on port 7777

Without Jenkins

Some Fuego users have their own front-ends or back-ends, and don’t
need to use the Jenkins CI server to control Fuego tests, or visualize
Fuego test results. install.sh supports the option ‘–nojenkins’
which produces a Docker container without the Jenkins server. This
reduces the overhead of the Docker container by quite a bit, for those
users.

Inside the Docker container, the Fuego core is still available.
Boards, toolchains, and tests are configured normally, but the ‘ftc’
command line tool is used to execute tests. There is no need to use
any of the ‘ftc’ functions to manage nodes, jobs or views in the
Jenkins system. ‘ftc’ is used to directly execute tests using ‘ftc
run-test’, and results can be queried using ‘ftc list-runs’ and ‘ftc
gen-report’.

When using Fuego with a different results visualization backend, the
user will use ‘ftc put-run’ to send the test result data to the
configured back end.

Without a container

Usually, for security and test reproducibility reasons, Fuego is
executed inside a Docker container on your host machine. That is, the
default installation of Fuego will create a Docker container using all
the software that is needed for Fuego’s tests. However, in some
configurations it is desirable to execute Fuego directly on a host
machine (not inside a Docker container). A user may have a dedicated
machine, or they may want to avoid the overhead of running a Docker
container.

A separate install script, called install-debian.sh can be used in
place of install.sh to install the Fuego system onto a Debian-based
Linux distribution.

Please note that installing without a container is not advised unless
you know exactly what you are doing. In this configuration, Fuego will
not be able to manage host-side test dependencies for you correctly.

Please note also that executing without a container presents a
possible security risk for your host. Fuego tests can run arbitrary
bash instruction sequences as part of their execution. So there is a
danger when running tests from unknown third parties that they will
execute something on your test host that breaches the security, or
that inadvertently damages you filesystem or data.

However, despite these drawbacks, there are test scenarios (such as
installing Fuego directly to a target board), where this configuration
makes sense.

About Fuego

Fuego is a test system specifically designed for embedded Linux
testing. It supports automated testing of embedded targets from
a host system, as it’s primary method of test execution.

The quick introduction to Fuego is that it consists of a host/target
script engine and over 100 pre-packaged tests. These are installed
in a docker container along with a Jenkins web interface and
job control system, ready for out-of-the-box Continuous Integration
testing of your embedded Linux project.

The ideas is that in the simplest case, you just add your board,
a toolchain, and go!

Installing Fuego

This page describes the steps to install Fuego on your Linux machine.
It includes detailed descriptions of the operations, for both users
and developers.

Tip

If you are interested in a quick outline of steps, please see
the Fuego Quickstart Guide instead.

Overview

The overview of the steps is:

	Install pre-requisite software

	Download the Fuego repository

	Build your Fuego container

	Start the container

	Access the Jenkins interface

Install pre-requisite software

To retrieve the Fuego software and create the Docker image for it, you
need to have git and Docker installed on your system.

On Ubuntu, try the following commands:

$ sudo apt-get install git
$ sudo apt-get install docker.io

These commands may be different for other distributions of Linux
(such as Fedora, RedHat, CentOS, Mint, etc.)

Overview of remaining steps

Steps 2 through 5 of the installation can be performed with the
following Linux commands:

$ git clone https://bitbucket.org/fuegotest/fuego.git
$ cd fuego
$./install.sh
$./start.sh
$ firefox http://localhost:8090/fuego

These steps and commands will be described in the sections that follow.

Install the Fuego repositories

The Fuego system is contained in 2 git repositories. One repository is
called fuego and the other is called fuego-core. The
fuego-core repository is installed inside the fuego directory, at
the top level of that repository’s directory structure. This is done
automatically during the install of Fuego. You do not need to clone the
fuego-core repository manually yourself.

The reason to have two repositories is that they
hold different pieces of the Fuego system, and this allows
for them to be upgraded independently of each other.

The repositories are hosted on bitbucket.org, under
the the fuegotest account.

Fuego repository

The fuego repository has the code and files used to build the
Fuego docker container. It also has the fuego-ro directory, which
has board definition files, various configuration files,
miscellaneous scripts, and other items which are used by Fuego
for container management or other purposes.

Fuego-core repository

The fuego-core repository has the code which implements the
core of the Fuego test execution engine, as well as the pre-packaged
tests included with the system. This includes the overlay generator,
the results parser, the Fuego shell function library, the directory
of tests, and the main Fuego command line tool ftc.

Downloading the repository

You can use git clone to download the main Fuego repository, like
so:

$ git clone https://bitbucket.org/fuegotest/fuego.git
$ cd fuego

After downloading the repositories, switch to the fuego directory,
as shown in the example.

Note that these git commands will download the ‘master’ branch of the
repository, which is the current main released version of Fuego.

Downloading a different branch

If you are experimenting with an unreleased version of Fuego
in the ‘next’ branch, then please replace the ‘git clone’ command in
the instructions above with these:

$ git clone -b next https://bitbucket.org/fuegotest/fuego.git
$ cd fuego

This uses -b next to indicate a different branch to check out during
the clone operation.

Create the Fuego container

The third step of the installation is to run install.sh to create the
Fuego docker container. While in the fuego directory,
run the script from the current directory, like so:

$./install.sh

install.sh uses Docker and the Dockerfile in the fuego directory
to create a Docker container with the Fuego Linux distribution.

This operation may take a long time. It takes about 45 minutes on my
machine. This step assembles a nearly complete distribution of
Linux, from binary packages obtained from the Internet.

This step requires Internet access. You need to make sure that
you have proxy access to the Internet if you are behind a corporate
firewall.

Please see the section “Alternative Installation Configuratons” below
for other arguments to install.sh, or for alternative installation
scripts.

Fuego Linux distribution

The Fuego Linux distribution is a distribution of Linux based on
Debian Linux, with many additional packages and tools installed.
These additional packages and tools are required for aspects of Fuego
operation, and to support host-side processes and services needed by
the tests included with Fuego.

For example, the Fuego distribution includes:

	the Jenkins continuous integration server

	the netperf server, for testing network performance.

	the ttc command, which is a tool for board farm management

	the python jenkins module, for interacting with Fuego’s Jenkins
instance

	and many other tools, programs and modules used by Fuego and its tests

Fuego commands execute inside the Fuego docker container, and Fuego
operations initiate in the container, but may access hardware (such as
USB ports, networking, or serial ports) that are outside the container.

Configuring for ‘privileged’ hardware access

In many configurations, Fuego can perform its operations using only
network operations. However, depending on the configuration of your
boards, or your lab hardware, and the relationship between your host
and target computers used for testing, you may need to access other
hardware on your host machine.

To do that, you can create a ‘privileged’ Fuego container, using
the --priv options with install.sh:

$./install.sh --priv

Customizing the privileged container

Note that using --priv causes install.sh to use a different
container creation script. Normally (in the non –priv case),
install.sh uses fuego-host-scripts/docker-create-container.sh.
When --priv is used, Fuego uses
fuego-host-scripts/docker-create-usb-privileged-container.sh.

This latter script (docker-create-usb-privileged-container.sh) can
be edited, before running install.sh, to change the set of hardware
devices that the Docker container will have privileged access to.

This is done by adding more bind mount options to the docker create
command inside this script. Explaining exactly how to do this is
outside the scope of this documentation. Please see documentation and
online resources for the Docker system for information about this.

	The script currently creates bind mounts for:
	
	/dev/bus/usb - USB ports, and newly created ports

	/dev/ttyACM0 - serial port 0

	/dev/ttyACM1 - serial port 1

	/dev/serial - general serial ports, and newly created ports

If you experience problems with Fuego accessing hardware on your host
system, you may need to build the Fuego docker container using
additional bind mounts that are specific to your configuration. Do so
by editing docker-create-used-privileged-container.sh, removing the
old container, and re-running ./install.sh --priv to build a new
container with the desired privileges.

Using an different container name

By default, install.sh creates a Docker image called fuego and a
Docker container called fuego-container. There are some situations
where it is desirable to use different names. For example, having
different container names is useful for Fuego self-testing. It can
also used to do A/B testing when migrating from one release of Fuego
to the next.

You can provide a different name for the Fuego image and container, by
supplying one on the command line for install.sh, like so:

$./install.sh my-fuego

This would create a Docker image named my-fuego and a Docker
container named my-fuego-container

Start the Fuego container

To start the Fuego docker container, use the start.sh script.

$./start.sh

Using a different container name

By default, start.sh will start the container named fuego-container
(which is the default Fuego docker container name). However, if you
created a different container name, you can specify the name
on the command line, like so:

$./start.sh my-fuego-container

When you run the start.sh, the terminal where the script
is run will be placed at a shell prompt inside the Docker container.
The session will be logged in as the root user inside the container.
The container will run until you exit this top-level shell.
Therefore, you should leave it (the shell and the terminal that your
ran start.sh from) running for the duration of your testing.

Access the Fuego Jenkins web interface

Fuego includes a version of Jenkins and a set of plugins as part of
its system. Jenkins is running inside the Fuego docker container. By
default the Fuego Jenkins interface runs on port 8090, with an URL
path /fuego.

Here is an example showing use of firefox to access the Jenkins
interface with Fuego

$ firefox http://localhost:8090/fuego

To access the Fuego interface you can use any browser - not just
Firefox.

In your browser, you should see a screen similar to the following:

[image: _images/fuego-1.1-jenkins-dashboard-new.png]
Note that this web interface is available from any machine that has
access to your host machine via the network. This means that test
operations and test results are available to anyone with access to
your machine. You can configure Jenkins with different security to
avoid this.

Access the Fuego docker command line

For some Fuego operations, it is handy to use the command line (shell
prompt) inside the Docker container. In particular, parts of the
remaining setup of your Fuego system involve running the ftc command
line tool.

Some ftc commands can be run outside the container, but other require
that you execute the command inside the container.

To start another shell prompt inside the currently running Fuego docker
container, you can use the script fuegosh. This helper script is
located at: fuego/fuego-ro/scripts/fuegosh. You may find it
convenient to copy this script to a bin directory on your system
(either /usr/local/bin or ~/bin) that is already in your PATH.

If you run fuegosh, it will place you at a shell prompt inside the
Fuego docker container, like so:

$ fuegosh
root@hostname:/#

Remaining steps

Fuego is now installed and ready for test operations. However, some
steps remain in order to use it with your hardware. You need to:

	Add one or more hardware boards (board definition files)

	Add a toolchain

	Populate the Jenkins interface with test jobs

These steps are described in subsequent sections of this documentation.

	See:
	
	Adding a Board

	Adding a Toolchain

	Adding Test Jobs to Jenkins

Alternative installation configurations

The default installation of Fuego installs the entire Fuego system,
including Jenkins and the Fuego core, into a Docker container running
on a host system, which Jenkins running on port 8090. However, it is
possible to install Fuego in other configurations.

	The configuration alternatives that are supported are:
	
	Install using a different TCP/IP port for Jenkins

	Install without the Jenkins server

	Install directly to your host (not inside a container)

With a different Jenkins TCP/IP port

By default the Fuego uses TCP/IP port 8090, but this can be changed to
another port. This can be used to avoid a conflict with a service
already using port 8090 on your host machine, or so that multiple
instances of Fuego can be run simultaneously.

To use a different port than 8090 for Jenkins, specify it after the
image name on the command line when you run install.sh. Note that this
means that you must specify a Docker image name in order to specify a
non-default port. For example:

$./install.sh fuego 7777

This would install Fuego, with an Docker image name of fuego, a
Docker container name of fuego-container, and with Jenkins
configured to run on port 7777

Without Jenkins

Some Fuego users have their own front-ends or back-ends, and don’t
need to use the Jenkins CI server to control Fuego tests, or visualize
Fuego test results. install.sh supports the option ‘–nojenkins’
which produces a Docker container without the Jenkins server. This
reduces the overhead of the Docker container by quite a bit, for those
users.

Inside the Docker container, the Fuego core is still available.
Boards, toolchains, and tests are configured normally, but the ‘ftc’
command line tool is used to execute tests. There is no need to use
any of the ‘ftc’ functions to manage nodes, jobs or views in the
Jenkins system. ‘ftc’ is used to directly execute tests using ‘ftc
run-test’, and results can be queried using ‘ftc list-runs’ and ‘ftc
gen-report’.

When using Fuego with a different results visualization backend, the
user will use ‘ftc put-run’ to send the test result data to the
configured back end.

Without a container

Usually, for security and test reproducibility reasons, Fuego is
executed inside a Docker container on your host machine. That is, the
default installation of Fuego will create a Docker container using all
the software that is needed for Fuego’s tests. However, in some
configurations it is desirable to execute Fuego directly on a host
machine (not inside a Docker container). A user may have a dedicated
machine, or they may want to avoid the overhead of running a Docker
container.

A separate install script, called install-debian.sh can be used in
place of install.sh to install the Fuego system onto a Debian-based
Linux distribution.

Please note that installing without a container is not advised unless
you know exactly what you are doing. In this configuration, Fuego will
not be able to manage host-side test dependencies for you correctly.

Please note also that executing without a container presents a
possible security risk for your host. Fuego tests can run arbitrary
bash instruction sequences as part of their execution. So there is a
danger when running tests from unknown third parties that they will
execute something on your test host that breaches the security, or
that inadvertently damages you filesystem or data.

However, despite these drawbacks, there are test scenarios (such as
installing Fuego directly to a target board), where this configuration
makes sense.

About Fuego

Fuego is a test system specifically designed for embedded Linux
testing. It supports automated testing of embedded targets from
a host system, as it’s primary method of test execution.

The quick introduction to Fuego is that it consists of a host/target
script engine and over 100 pre-packaged tests. These are installed
in a docker container along with a Jenkins web interface and
job control system, ready for out-of-the-box Continuous Integration
testing of your embedded Linux project.

The ideas is that in the simplest case, you just add your board,
a toolchain, and go!

Installing Fuego

This page describes the steps to install Fuego on your Linux machine.
It includes detailed descriptions of the operations, for both users
and developers.

Tip

If you are interested in a quick outline of steps, please see
the Fuego Quickstart Guide instead.

Overview

The overview of the steps is:

	Install pre-requisite software

	Download the Fuego repository

	Build your Fuego container

	Start the container

	Access the Jenkins interface

Install pre-requisite software

To retrieve the Fuego software and create the Docker image for it, you
need to have git and Docker installed on your system.

On Ubuntu, try the following commands:

$ sudo apt-get install git
$ sudo apt-get install docker.io

These commands may be different for other distributions of Linux
(such as Fedora, RedHat, CentOS, Mint, etc.)

Overview of remaining steps

Steps 2 through 5 of the installation can be performed with the
following Linux commands:

$ git clone https://bitbucket.org/fuegotest/fuego.git
$ cd fuego
$./install.sh
$./start.sh
$ firefox http://localhost:8090/fuego

These steps and commands will be described in the sections that follow.

Install the Fuego repositories

The Fuego system is contained in 2 git repositories. One repository is
called fuego and the other is called fuego-core. The
fuego-core repository is installed inside the fuego directory, at
the top level of that repository’s directory structure. This is done
automatically during the install of Fuego. You do not need to clone the
fuego-core repository manually yourself.

The reason to have two repositories is that they
hold different pieces of the Fuego system, and this allows
for them to be upgraded independently of each other.

The repositories are hosted on bitbucket.org, under
the the fuegotest account.

Fuego repository

The fuego repository has the code and files used to build the
Fuego docker container. It also has the fuego-ro directory, which
has board definition files, various configuration files,
miscellaneous scripts, and other items which are used by Fuego
for container management or other purposes.

Fuego-core repository

The fuego-core repository has the code which implements the
core of the Fuego test execution engine, as well as the pre-packaged
tests included with the system. This includes the overlay generator,
the results parser, the Fuego shell function library, the directory
of tests, and the main Fuego command line tool ftc.

Downloading the repository

You can use git clone to download the main Fuego repository, like
so:

$ git clone https://bitbucket.org/fuegotest/fuego.git
$ cd fuego

After downloading the repositories, switch to the fuego directory,
as shown in the example.

Note that these git commands will download the ‘master’ branch of the
repository, which is the current main released version of Fuego.

Downloading a different branch

If you are experimenting with an unreleased version of Fuego
in the ‘next’ branch, then please replace the ‘git clone’ command in
the instructions above with these:

$ git clone -b next https://bitbucket.org/fuegotest/fuego.git
$ cd fuego

This uses -b next to indicate a different branch to check out during
the clone operation.

Create the Fuego container

The third step of the installation is to run install.sh to create the
Fuego docker container. While in the fuego directory,
run the script from the current directory, like so:

$./install.sh

install.sh uses Docker and the Dockerfile in the fuego directory
to create a Docker container with the Fuego Linux distribution.

This operation may take a long time. It takes about 45 minutes on my
machine. This step assembles a nearly complete distribution of
Linux, from binary packages obtained from the Internet.

This step requires Internet access. You need to make sure that
you have proxy access to the Internet if you are behind a corporate
firewall.

Please see the section “Alternative Installation Configuratons” below
for other arguments to install.sh, or for alternative installation
scripts.

Fuego Linux distribution

The Fuego Linux distribution is a distribution of Linux based on
Debian Linux, with many additional packages and tools installed.
These additional packages and tools are required for aspects of Fuego
operation, and to support host-side processes and services needed by
the tests included with Fuego.

For example, the Fuego distribution includes:

	the Jenkins continuous integration server

	the netperf server, for testing network performance.

	the ttc command, which is a tool for board farm management

	the python jenkins module, for interacting with Fuego’s Jenkins
instance

	and many other tools, programs and modules used by Fuego and its tests

Fuego commands execute inside the Fuego docker container, and Fuego
operations initiate in the container, but may access hardware (such as
USB ports, networking, or serial ports) that are outside the container.

Configuring for ‘privileged’ hardware access

In many configurations, Fuego can perform its operations using only
network operations. However, depending on the configuration of your
boards, or your lab hardware, and the relationship between your host
and target computers used for testing, you may need to access other
hardware on your host machine.

To do that, you can create a ‘privileged’ Fuego container, using
the --priv options with install.sh:

$./install.sh --priv

Customizing the privileged container

Note that using --priv causes install.sh to use a different
container creation script. Normally (in the non –priv case),
install.sh uses fuego-host-scripts/docker-create-container.sh.
When --priv is used, Fuego uses
fuego-host-scripts/docker-create-usb-privileged-container.sh.

This latter script (docker-create-usb-privileged-container.sh) can
be edited, before running install.sh, to change the set of hardware
devices that the Docker container will have privileged access to.

This is done by adding more bind mount options to the docker create
command inside this script. Explaining exactly how to do this is
outside the scope of this documentation. Please see documentation and
online resources for the Docker system for information about this.

	The script currently creates bind mounts for:
	
	/dev/bus/usb - USB ports, and newly created ports

	/dev/ttyACM0 - serial port 0

	/dev/ttyACM1 - serial port 1

	/dev/serial - general serial ports, and newly created ports

If you experience problems with Fuego accessing hardware on your host
system, you may need to build the Fuego docker container using
additional bind mounts that are specific to your configuration. Do so
by editing docker-create-used-privileged-container.sh, removing the
old container, and re-running ./install.sh --priv to build a new
container with the desired privileges.

Using an different container name

By default, install.sh creates a Docker image called fuego and a
Docker container called fuego-container. There are some situations
where it is desirable to use different names. For example, having
different container names is useful for Fuego self-testing. It can
also used to do A/B testing when migrating from one release of Fuego
to the next.

You can provide a different name for the Fuego image and container, by
supplying one on the command line for install.sh, like so:

$./install.sh my-fuego

This would create a Docker image named my-fuego and a Docker
container named my-fuego-container

Start the Fuego container

To start the Fuego docker container, use the start.sh script.

$./start.sh

Using a different container name

By default, start.sh will start the container named fuego-container
(which is the default Fuego docker container name). However, if you
created a different container name, you can specify the name
on the command line, like so:

$./start.sh my-fuego-container

When you run the start.sh, the terminal where the script
is run will be placed at a shell prompt inside the Docker container.
The session will be logged in as the root user inside the container.
The container will run until you exit this top-level shell.
Therefore, you should leave it (the shell and the terminal that your
ran start.sh from) running for the duration of your testing.

Access the Fuego Jenkins web interface

Fuego includes a version of Jenkins and a set of plugins as part of
its system. Jenkins is running inside the Fuego docker container. By
default the Fuego Jenkins interface runs on port 8090, with an URL
path /fuego.

Here is an example showing use of firefox to access the Jenkins
interface with Fuego

$ firefox http://localhost:8090/fuego

To access the Fuego interface you can use any browser - not just
Firefox.

In your browser, you should see a screen similar to the following:

[image: _images/fuego-1.1-jenkins-dashboard-new.png]
Note that this web interface is available from any machine that has
access to your host machine via the network. This means that test
operations and test results are available to anyone with access to
your machine. You can configure Jenkins with different security to
avoid this.

Access the Fuego docker command line

For some Fuego operations, it is handy to use the command line (shell
prompt) inside the Docker container. In particular, parts of the
remaining setup of your Fuego system involve running the ftc command
line tool.

Some ftc commands can be run outside the container, but other require
that you execute the command inside the container.

To start another shell prompt inside the currently running Fuego docker
container, you can use the script fuegosh. This helper script is
located at: fuego/fuego-ro/scripts/fuegosh. You may find it
convenient to copy this script to a bin directory on your system
(either /usr/local/bin or ~/bin) that is already in your PATH.

If you run fuegosh, it will place you at a shell prompt inside the
Fuego docker container, like so:

$ fuegosh
root@hostname:/#

Remaining steps

Fuego is now installed and ready for test operations. However, some
steps remain in order to use it with your hardware. You need to:

	Add one or more hardware boards (board definition files)

	Add a toolchain

	Populate the Jenkins interface with test jobs

These steps are described in subsequent sections of this documentation.

	See:
	
	Adding a Board

	Adding a Toolchain

	Adding Test Jobs to Jenkins

Alternative installation configurations

The default installation of Fuego installs the entire Fuego system,
including Jenkins and the Fuego core, into a Docker container running
on a host system, which Jenkins running on port 8090. However, it is
possible to install Fuego in other configurations.

	The configuration alternatives that are supported are:
	
	Install using a different TCP/IP port for Jenkins

	Install without the Jenkins server

	Install directly to your host (not inside a container)

With a different Jenkins TCP/IP port

By default the Fuego uses TCP/IP port 8090, but this can be changed to
another port. This can be used to avoid a conflict with a service
already using port 8090 on your host machine, or so that multiple
instances of Fuego can be run simultaneously.

To use a different port than 8090 for Jenkins, specify it after the
image name on the command line when you run install.sh. Note that this
means that you must specify a Docker image name in order to specify a
non-default port. For example:

$./install.sh fuego 7777

This would install Fuego, with an Docker image name of fuego, a
Docker container name of fuego-container, and with Jenkins
configured to run on port 7777

Without Jenkins

Some Fuego users have their own front-ends or back-ends, and don’t
need to use the Jenkins CI server to control Fuego tests, or visualize
Fuego test results. install.sh supports the option ‘–nojenkins’
which produces a Docker container without the Jenkins server. This
reduces the overhead of the Docker container by quite a bit, for those
users.

Inside the Docker container, the Fuego core is still available.
Boards, toolchains, and tests are configured normally, but the ‘ftc’
command line tool is used to execute tests. There is no need to use
any of the ‘ftc’ functions to manage nodes, jobs or views in the
Jenkins system. ‘ftc’ is used to directly execute tests using ‘ftc
run-test’, and results can be queried using ‘ftc list-runs’ and ‘ftc
gen-report’.

When using Fuego with a different results visualization backend, the
user will use ‘ftc put-run’ to send the test result data to the
configured back end.

Without a container

Usually, for security and test reproducibility reasons, Fuego is
executed inside a Docker container on your host machine. That is, the
default installation of Fuego will create a Docker container using all
the software that is needed for Fuego’s tests. However, in some
configurations it is desirable to execute Fuego directly on a host
machine (not inside a Docker container). A user may have a dedicated
machine, or they may want to avoid the overhead of running a Docker
container.

A separate install script, called install-debian.sh can be used in
place of install.sh to install the Fuego system onto a Debian-based
Linux distribution.

Please note that installing without a container is not advised unless
you know exactly what you are doing. In this configuration, Fuego will
not be able to manage host-side test dependencies for you correctly.

Please note also that executing without a container presents a
possible security risk for your host. Fuego tests can run arbitrary
bash instruction sequences as part of their execution. So there is a
danger when running tests from unknown third parties that they will
execute something on your test host that breaches the security, or
that inadvertently damages you filesystem or data.

However, despite these drawbacks, there are test scenarios (such as
installing Fuego directly to a target board), where this configuration
makes sense.

About Fuego

Fuego is a test system specifically designed for embedded Linux
testing. It supports automated testing of embedded targets from
a host system, as it’s primary method of test execution.

The quick introduction to Fuego is that it consists of a host/target
script engine and over 100 pre-packaged tests. These are installed
in a docker container along with a Jenkins web interface and
job control system, ready for out-of-the-box Continuous Integration
testing of your embedded Linux project.

The ideas is that in the simplest case, you just add your board,
a toolchain, and go!

 Notice there is no anchor or label before this section heading

These are items from the Sandbox2 page.

Sndbx2

This page header doesn’t have the same name as the page.

This page is for testing different elements of reStructuredText markup,
in the Fuego documentation. This is intended to be used during the
conversion from wiki pages, to make sure all important formatting is
preserved.

Page Level Header2

Here is some text

Chapter Level Header2

Reference test

Test 1

Reference: `Sandbox`_

Here is how you refer to a page: `Sandbox`_

Result: …/_build/html/Sandbox2.html#id4 - FAIL

Test 2

Reference: `Sandbox2`_

Here is another way to refer to a page: `Sandbox2`_

Result: …/_build/html/Sandbox2.html#id6 - FAIL

Test 3

Reference: Sandbox2_

Here is another way to refer to a page: Sandbox2_

	Result:
	
	cover = ???

	URL = …/_build/html/Sandbox2.html#id8 - FAIL

Test 4

Description: anchor reference using underscore

Reference: `Pointer to slandbox page1 <sand1>`_

Here is one way to refer to a section on a page, with cover text:
Pointer to slandbox page1

	Result:
	
	cover - Pointer to slandbox page1

	URL - …/_build/html/sand1 - FAIL

Test 4

Here is another way to refer to a section on a page, with cover text:

This uses a ref:

Reference: :ref:`Pointer to slandbox page2 <sand1>`

Here is the ref: Pointer to slandbox page2

	Result:
	
	cover = Pointer to slandbox page2

	URL = …/_build/html/Sandbox.html#sand1 - PASS

	Conclusion:
	
	you MUST have an anchor to use a ref

	only a :ref: gives you the page name (Sandbox.html) and the anchor
ref (sand1)

Test 3

Here is one way to refer to a section on a page, with cover text:
This one uses trailing _ and the page name:
Pointer to slandbox2 page

Here is one way to refer to a section on a page, with cover text:
This one uses an href and the page name:
Pointer to slandbox2 page

Here is another way to refer to a section on a page, with cover text:
This one uses a trailing _ and the section name:
Pointer to slandbox2 page header

Here is another way to refer to a section on a page, with cover text:
This one uses a ref and the section name:
Pointer to slandbox2 page header

Which ways worked?

Toctree test

toctrees apparently refer to file (page) names.
The items put into the tree are the section headings from those pages

	Installing Fuego
	Overview

	Install pre-requisite software

	Overview of remaining steps

	Install the Fuego repositories

	Create the Fuego container

	Start the Fuego container

	Access the Fuego Jenkins web interface

	Access the Fuego docker command line

	Remaining steps

	Alternative installation configurations

	About Fuego

Here’s another toctree - this time with a caption

Important Pages2!!

	Installing Fuego
	Overview

	Install pre-requisite software

	Overview of remaining steps

	Install the Fuego repositories

	Create the Fuego container

	Start the Fuego container

	Access the Fuego Jenkins web interface

	Access the Fuego docker command line

	Remaining steps

	Alternative installation configurations

	About Fuego

Following this is a hidden toctree

I can keep doing this all day!!

Installing Fuego

This page describes the steps to install Fuego on your Linux machine.
It includes detailed descriptions of the operations, for both users
and developers.

Tip

If you are interested in a quick outline of steps, please see
the Fuego Quickstart Guide instead.

Overview

The overview of the steps is:

	Install pre-requisite software

	Download the Fuego repository

	Build your Fuego container

	Start the container

	Access the Jenkins interface

Install pre-requisite software

To retrieve the Fuego software and create the Docker image for it, you
need to have git and Docker installed on your system.

On Ubuntu, try the following commands:

$ sudo apt-get install git
$ sudo apt-get install docker.io

These commands may be different for other distributions of Linux
(such as Fedora, RedHat, CentOS, Mint, etc.)

Overview of remaining steps

Steps 2 through 5 of the installation can be performed with the
following Linux commands:

$ git clone https://bitbucket.org/fuegotest/fuego.git
$ cd fuego
$./install.sh
$./start.sh
$ firefox http://localhost:8090/fuego

These steps and commands will be described in the sections that follow.

Install the Fuego repositories

The Fuego system is contained in 2 git repositories. One repository is
called fuego and the other is called fuego-core. The
fuego-core repository is installed inside the fuego directory, at
the top level of that repository’s directory structure. This is done
automatically during the install of Fuego. You do not need to clone the
fuego-core repository manually yourself.

The reason to have two repositories is that they
hold different pieces of the Fuego system, and this allows
for them to be upgraded independently of each other.

The repositories are hosted on bitbucket.org, under
the the fuegotest account.

Fuego repository

The fuego repository has the code and files used to build the
Fuego docker container. It also has the fuego-ro directory, which
has board definition files, various configuration files,
miscellaneous scripts, and other items which are used by Fuego
for container management or other purposes.

Fuego-core repository

The fuego-core repository has the code which implements the
core of the Fuego test execution engine, as well as the pre-packaged
tests included with the system. This includes the overlay generator,
the results parser, the Fuego shell function library, the directory
of tests, and the main Fuego command line tool ftc.

Downloading the repository

You can use git clone to download the main Fuego repository, like
so:

$ git clone https://bitbucket.org/fuegotest/fuego.git
$ cd fuego

After downloading the repositories, switch to the fuego directory,
as shown in the example.

Note that these git commands will download the ‘master’ branch of the
repository, which is the current main released version of Fuego.

Downloading a different branch

If you are experimenting with an unreleased version of Fuego
in the ‘next’ branch, then please replace the ‘git clone’ command in
the instructions above with these:

$ git clone -b next https://bitbucket.org/fuegotest/fuego.git
$ cd fuego

This uses -b next to indicate a different branch to check out during
the clone operation.

Create the Fuego container

The third step of the installation is to run install.sh to create the
Fuego docker container. While in the fuego directory,
run the script from the current directory, like so:

$./install.sh

install.sh uses Docker and the Dockerfile in the fuego directory
to create a Docker container with the Fuego Linux distribution.

This operation may take a long time. It takes about 45 minutes on my
machine. This step assembles a nearly complete distribution of
Linux, from binary packages obtained from the Internet.

This step requires Internet access. You need to make sure that
you have proxy access to the Internet if you are behind a corporate
firewall.

Please see the section “Alternative Installation Configuratons” below
for other arguments to install.sh, or for alternative installation
scripts.

Fuego Linux distribution

The Fuego Linux distribution is a distribution of Linux based on
Debian Linux, with many additional packages and tools installed.
These additional packages and tools are required for aspects of Fuego
operation, and to support host-side processes and services needed by
the tests included with Fuego.

For example, the Fuego distribution includes:

	the Jenkins continuous integration server

	the netperf server, for testing network performance.

	the ttc command, which is a tool for board farm management

	the python jenkins module, for interacting with Fuego’s Jenkins
instance

	and many other tools, programs and modules used by Fuego and its tests

Fuego commands execute inside the Fuego docker container, and Fuego
operations initiate in the container, but may access hardware (such as
USB ports, networking, or serial ports) that are outside the container.

Configuring for ‘privileged’ hardware access

In many configurations, Fuego can perform its operations using only
network operations. However, depending on the configuration of your
boards, or your lab hardware, and the relationship between your host
and target computers used for testing, you may need to access other
hardware on your host machine.

To do that, you can create a ‘privileged’ Fuego container, using
the --priv options with install.sh:

$./install.sh --priv

Customizing the privileged container

Note that using --priv causes install.sh to use a different
container creation script. Normally (in the non –priv case),
install.sh uses fuego-host-scripts/docker-create-container.sh.
When --priv is used, Fuego uses
fuego-host-scripts/docker-create-usb-privileged-container.sh.

This latter script (docker-create-usb-privileged-container.sh) can
be edited, before running install.sh, to change the set of hardware
devices that the Docker container will have privileged access to.

This is done by adding more bind mount options to the docker create
command inside this script. Explaining exactly how to do this is
outside the scope of this documentation. Please see documentation and
online resources for the Docker system for information about this.

	The script currently creates bind mounts for:
	
	/dev/bus/usb - USB ports, and newly created ports

	/dev/ttyACM0 - serial port 0

	/dev/ttyACM1 - serial port 1

	/dev/serial - general serial ports, and newly created ports

If you experience problems with Fuego accessing hardware on your host
system, you may need to build the Fuego docker container using
additional bind mounts that are specific to your configuration. Do so
by editing docker-create-used-privileged-container.sh, removing the
old container, and re-running ./install.sh --priv to build a new
container with the desired privileges.

Using an different container name

By default, install.sh creates a Docker image called fuego and a
Docker container called fuego-container. There are some situations
where it is desirable to use different names. For example, having
different container names is useful for Fuego self-testing. It can
also used to do A/B testing when migrating from one release of Fuego
to the next.

You can provide a different name for the Fuego image and container, by
supplying one on the command line for install.sh, like so:

$./install.sh my-fuego

This would create a Docker image named my-fuego and a Docker
container named my-fuego-container

Start the Fuego container

To start the Fuego docker container, use the start.sh script.

$./start.sh

Using a different container name

By default, start.sh will start the container named fuego-container
(which is the default Fuego docker container name). However, if you
created a different container name, you can specify the name
on the command line, like so:

$./start.sh my-fuego-container

When you run the start.sh, the terminal where the script
is run will be placed at a shell prompt inside the Docker container.
The session will be logged in as the root user inside the container.
The container will run until you exit this top-level shell.
Therefore, you should leave it (the shell and the terminal that your
ran start.sh from) running for the duration of your testing.

Access the Fuego Jenkins web interface

Fuego includes a version of Jenkins and a set of plugins as part of
its system. Jenkins is running inside the Fuego docker container. By
default the Fuego Jenkins interface runs on port 8090, with an URL
path /fuego.

Here is an example showing use of firefox to access the Jenkins
interface with Fuego

$ firefox http://localhost:8090/fuego

To access the Fuego interface you can use any browser - not just
Firefox.

In your browser, you should see a screen similar to the following:

[image: _images/fuego-1.1-jenkins-dashboard-new.png]
Note that this web interface is available from any machine that has
access to your host machine via the network. This means that test
operations and test results are available to anyone with access to
your machine. You can configure Jenkins with different security to
avoid this.

Access the Fuego docker command line

For some Fuego operations, it is handy to use the command line (shell
prompt) inside the Docker container. In particular, parts of the
remaining setup of your Fuego system involve running the ftc command
line tool.

Some ftc commands can be run outside the container, but other require
that you execute the command inside the container.

To start another shell prompt inside the currently running Fuego docker
container, you can use the script fuegosh. This helper script is
located at: fuego/fuego-ro/scripts/fuegosh. You may find it
convenient to copy this script to a bin directory on your system
(either /usr/local/bin or ~/bin) that is already in your PATH.

If you run fuegosh, it will place you at a shell prompt inside the
Fuego docker container, like so:

$ fuegosh
root@hostname:/#

Remaining steps

Fuego is now installed and ready for test operations. However, some
steps remain in order to use it with your hardware. You need to:

	Add one or more hardware boards (board definition files)

	Add a toolchain

	Populate the Jenkins interface with test jobs

These steps are described in subsequent sections of this documentation.

	See:
	
	Adding a Board

	Adding a Toolchain

	Adding Test Jobs to Jenkins

Alternative installation configurations

The default installation of Fuego installs the entire Fuego system,
including Jenkins and the Fuego core, into a Docker container running
on a host system, which Jenkins running on port 8090. However, it is
possible to install Fuego in other configurations.

	The configuration alternatives that are supported are:
	
	Install using a different TCP/IP port for Jenkins

	Install without the Jenkins server

	Install directly to your host (not inside a container)

With a different Jenkins TCP/IP port

By default the Fuego uses TCP/IP port 8090, but this can be changed to
another port. This can be used to avoid a conflict with a service
already using port 8090 on your host machine, or so that multiple
instances of Fuego can be run simultaneously.

To use a different port than 8090 for Jenkins, specify it after the
image name on the command line when you run install.sh. Note that this
means that you must specify a Docker image name in order to specify a
non-default port. For example:

$./install.sh fuego 7777

This would install Fuego, with an Docker image name of fuego, a
Docker container name of fuego-container, and with Jenkins
configured to run on port 7777

Without Jenkins

Some Fuego users have their own front-ends or back-ends, and don’t
need to use the Jenkins CI server to control Fuego tests, or visualize
Fuego test results. install.sh supports the option ‘–nojenkins’
which produces a Docker container without the Jenkins server. This
reduces the overhead of the Docker container by quite a bit, for those
users.

Inside the Docker container, the Fuego core is still available.
Boards, toolchains, and tests are configured normally, but the ‘ftc’
command line tool is used to execute tests. There is no need to use
any of the ‘ftc’ functions to manage nodes, jobs or views in the
Jenkins system. ‘ftc’ is used to directly execute tests using ‘ftc
run-test’, and results can be queried using ‘ftc list-runs’ and ‘ftc
gen-report’.

When using Fuego with a different results visualization backend, the
user will use ‘ftc put-run’ to send the test result data to the
configured back end.

Without a container

Usually, for security and test reproducibility reasons, Fuego is
executed inside a Docker container on your host machine. That is, the
default installation of Fuego will create a Docker container using all
the software that is needed for Fuego’s tests. However, in some
configurations it is desirable to execute Fuego directly on a host
machine (not inside a Docker container). A user may have a dedicated
machine, or they may want to avoid the overhead of running a Docker
container.

A separate install script, called install-debian.sh can be used in
place of install.sh to install the Fuego system onto a Debian-based
Linux distribution.

Please note that installing without a container is not advised unless
you know exactly what you are doing. In this configuration, Fuego will
not be able to manage host-side test dependencies for you correctly.

Please note also that executing without a container presents a
possible security risk for your host. Fuego tests can run arbitrary
bash instruction sequences as part of their execution. So there is a
danger when running tests from unknown third parties that they will
execute something on your test host that breaches the security, or
that inadvertently damages you filesystem or data.

However, despite these drawbacks, there are test scenarios (such as
installing Fuego directly to a target board), where this configuration
makes sense.

About Fuego

Fuego is a test system specifically designed for embedded Linux
testing. It supports automated testing of embedded targets from
a host system, as it’s primary method of test execution.

The quick introduction to Fuego is that it consists of a host/target
script engine and over 100 pre-packaged tests. These are installed
in a docker container along with a Jenkins web interface and
job control system, ready for out-of-the-box Continuous Integration
testing of your embedded Linux project.

The ideas is that in the simplest case, you just add your board,
a toolchain, and go!

Installing Fuego

This page describes the steps to install Fuego on your Linux machine.
It includes detailed descriptions of the operations, for both users
and developers.

Tip

If you are interested in a quick outline of steps, please see
the Fuego Quickstart Guide instead.

Overview

The overview of the steps is:

	Install pre-requisite software

	Download the Fuego repository

	Build your Fuego container

	Start the container

	Access the Jenkins interface

Install pre-requisite software

To retrieve the Fuego software and create the Docker image for it, you
need to have git and Docker installed on your system.

On Ubuntu, try the following commands:

$ sudo apt-get install git
$ sudo apt-get install docker.io

These commands may be different for other distributions of Linux
(such as Fedora, RedHat, CentOS, Mint, etc.)

Overview of remaining steps

Steps 2 through 5 of the installation can be performed with the
following Linux commands:

$ git clone https://bitbucket.org/fuegotest/fuego.git
$ cd fuego
$./install.sh
$./start.sh
$ firefox http://localhost:8090/fuego

These steps and commands will be described in the sections that follow.

Install the Fuego repositories

The Fuego system is contained in 2 git repositories. One repository is
called fuego and the other is called fuego-core. The
fuego-core repository is installed inside the fuego directory, at
the top level of that repository’s directory structure. This is done
automatically during the install of Fuego. You do not need to clone the
fuego-core repository manually yourself.

The reason to have two repositories is that they
hold different pieces of the Fuego system, and this allows
for them to be upgraded independently of each other.

The repositories are hosted on bitbucket.org, under
the the fuegotest account.

Fuego repository

The fuego repository has the code and files used to build the
Fuego docker container. It also has the fuego-ro directory, which
has board definition files, various configuration files,
miscellaneous scripts, and other items which are used by Fuego
for container management or other purposes.

Fuego-core repository

The fuego-core repository has the code which implements the
core of the Fuego test execution engine, as well as the pre-packaged
tests included with the system. This includes the overlay generator,
the results parser, the Fuego shell function library, the directory
of tests, and the main Fuego command line tool ftc.

Downloading the repository

You can use git clone to download the main Fuego repository, like
so:

$ git clone https://bitbucket.org/fuegotest/fuego.git
$ cd fuego

After downloading the repositories, switch to the fuego directory,
as shown in the example.

Note that these git commands will download the ‘master’ branch of the
repository, which is the current main released version of Fuego.

Downloading a different branch

If you are experimenting with an unreleased version of Fuego
in the ‘next’ branch, then please replace the ‘git clone’ command in
the instructions above with these:

$ git clone -b next https://bitbucket.org/fuegotest/fuego.git
$ cd fuego

This uses -b next to indicate a different branch to check out during
the clone operation.

Create the Fuego container

The third step of the installation is to run install.sh to create the
Fuego docker container. While in the fuego directory,
run the script from the current directory, like so:

$./install.sh

install.sh uses Docker and the Dockerfile in the fuego directory
to create a Docker container with the Fuego Linux distribution.

This operation may take a long time. It takes about 45 minutes on my
machine. This step assembles a nearly complete distribution of
Linux, from binary packages obtained from the Internet.

This step requires Internet access. You need to make sure that
you have proxy access to the Internet if you are behind a corporate
firewall.

Please see the section “Alternative Installation Configuratons” below
for other arguments to install.sh, or for alternative installation
scripts.

Fuego Linux distribution

The Fuego Linux distribution is a distribution of Linux based on
Debian Linux, with many additional packages and tools installed.
These additional packages and tools are required for aspects of Fuego
operation, and to support host-side processes and services needed by
the tests included with Fuego.

For example, the Fuego distribution includes:

	the Jenkins continuous integration server

	the netperf server, for testing network performance.

	the ttc command, which is a tool for board farm management

	the python jenkins module, for interacting with Fuego’s Jenkins
instance

	and many other tools, programs and modules used by Fuego and its tests

Fuego commands execute inside the Fuego docker container, and Fuego
operations initiate in the container, but may access hardware (such as
USB ports, networking, or serial ports) that are outside the container.

Configuring for ‘privileged’ hardware access

In many configurations, Fuego can perform its operations using only
network operations. However, depending on the configuration of your
boards, or your lab hardware, and the relationship between your host
and target computers used for testing, you may need to access other
hardware on your host machine.

To do that, you can create a ‘privileged’ Fuego container, using
the --priv options with install.sh:

$./install.sh --priv

Customizing the privileged container

Note that using --priv causes install.sh to use a different
container creation script. Normally (in the non –priv case),
install.sh uses fuego-host-scripts/docker-create-container.sh.
When --priv is used, Fuego uses
fuego-host-scripts/docker-create-usb-privileged-container.sh.

This latter script (docker-create-usb-privileged-container.sh) can
be edited, before running install.sh, to change the set of hardware
devices that the Docker container will have privileged access to.

This is done by adding more bind mount options to the docker create
command inside this script. Explaining exactly how to do this is
outside the scope of this documentation. Please see documentation and
online resources for the Docker system for information about this.

	The script currently creates bind mounts for:
	
	/dev/bus/usb - USB ports, and newly created ports

	/dev/ttyACM0 - serial port 0

	/dev/ttyACM1 - serial port 1

	/dev/serial - general serial ports, and newly created ports

If you experience problems with Fuego accessing hardware on your host
system, you may need to build the Fuego docker container using
additional bind mounts that are specific to your configuration. Do so
by editing docker-create-used-privileged-container.sh, removing the
old container, and re-running ./install.sh --priv to build a new
container with the desired privileges.

Using an different container name

By default, install.sh creates a Docker image called fuego and a
Docker container called fuego-container. There are some situations
where it is desirable to use different names. For example, having
different container names is useful for Fuego self-testing. It can
also used to do A/B testing when migrating from one release of Fuego
to the next.

You can provide a different name for the Fuego image and container, by
supplying one on the command line for install.sh, like so:

$./install.sh my-fuego

This would create a Docker image named my-fuego and a Docker
container named my-fuego-container

Start the Fuego container

To start the Fuego docker container, use the start.sh script.

$./start.sh

Using a different container name

By default, start.sh will start the container named fuego-container
(which is the default Fuego docker container name). However, if you
created a different container name, you can specify the name
on the command line, like so:

$./start.sh my-fuego-container

When you run the start.sh, the terminal where the script
is run will be placed at a shell prompt inside the Docker container.
The session will be logged in as the root user inside the container.
The container will run until you exit this top-level shell.
Therefore, you should leave it (the shell and the terminal that your
ran start.sh from) running for the duration of your testing.

Access the Fuego Jenkins web interface

Fuego includes a version of Jenkins and a set of plugins as part of
its system. Jenkins is running inside the Fuego docker container. By
default the Fuego Jenkins interface runs on port 8090, with an URL
path /fuego.

Here is an example showing use of firefox to access the Jenkins
interface with Fuego

$ firefox http://localhost:8090/fuego

To access the Fuego interface you can use any browser - not just
Firefox.

In your browser, you should see a screen similar to the following:

[image: _images/fuego-1.1-jenkins-dashboard-new.png]
Note that this web interface is available from any machine that has
access to your host machine via the network. This means that test
operations and test results are available to anyone with access to
your machine. You can configure Jenkins with different security to
avoid this.

Access the Fuego docker command line

For some Fuego operations, it is handy to use the command line (shell
prompt) inside the Docker container. In particular, parts of the
remaining setup of your Fuego system involve running the ftc command
line tool.

Some ftc commands can be run outside the container, but other require
that you execute the command inside the container.

To start another shell prompt inside the currently running Fuego docker
container, you can use the script fuegosh. This helper script is
located at: fuego/fuego-ro/scripts/fuegosh. You may find it
convenient to copy this script to a bin directory on your system
(either /usr/local/bin or ~/bin) that is already in your PATH.

If you run fuegosh, it will place you at a shell prompt inside the
Fuego docker container, like so:

$ fuegosh
root@hostname:/#

Remaining steps

Fuego is now installed and ready for test operations. However, some
steps remain in order to use it with your hardware. You need to:

	Add one or more hardware boards (board definition files)

	Add a toolchain

	Populate the Jenkins interface with test jobs

These steps are described in subsequent sections of this documentation.

	See:
	
	Adding a Board

	Adding a Toolchain

	Adding Test Jobs to Jenkins

Alternative installation configurations

The default installation of Fuego installs the entire Fuego system,
including Jenkins and the Fuego core, into a Docker container running
on a host system, which Jenkins running on port 8090. However, it is
possible to install Fuego in other configurations.

	The configuration alternatives that are supported are:
	
	Install using a different TCP/IP port for Jenkins

	Install without the Jenkins server

	Install directly to your host (not inside a container)

With a different Jenkins TCP/IP port

By default the Fuego uses TCP/IP port 8090, but this can be changed to
another port. This can be used to avoid a conflict with a service
already using port 8090 on your host machine, or so that multiple
instances of Fuego can be run simultaneously.

To use a different port than 8090 for Jenkins, specify it after the
image name on the command line when you run install.sh. Note that this
means that you must specify a Docker image name in order to specify a
non-default port. For example:

$./install.sh fuego 7777

This would install Fuego, with an Docker image name of fuego, a
Docker container name of fuego-container, and with Jenkins
configured to run on port 7777

Without Jenkins

Some Fuego users have their own front-ends or back-ends, and don’t
need to use the Jenkins CI server to control Fuego tests, or visualize
Fuego test results. install.sh supports the option ‘–nojenkins’
which produces a Docker container without the Jenkins server. This
reduces the overhead of the Docker container by quite a bit, for those
users.

Inside the Docker container, the Fuego core is still available.
Boards, toolchains, and tests are configured normally, but the ‘ftc’
command line tool is used to execute tests. There is no need to use
any of the ‘ftc’ functions to manage nodes, jobs or views in the
Jenkins system. ‘ftc’ is used to directly execute tests using ‘ftc
run-test’, and results can be queried using ‘ftc list-runs’ and ‘ftc
gen-report’.

When using Fuego with a different results visualization backend, the
user will use ‘ftc put-run’ to send the test result data to the
configured back end.

Without a container

Usually, for security and test reproducibility reasons, Fuego is
executed inside a Docker container on your host machine. That is, the
default installation of Fuego will create a Docker container using all
the software that is needed for Fuego’s tests. However, in some
configurations it is desirable to execute Fuego directly on a host
machine (not inside a Docker container). A user may have a dedicated
machine, or they may want to avoid the overhead of running a Docker
container.

A separate install script, called install-debian.sh can be used in
place of install.sh to install the Fuego system onto a Debian-based
Linux distribution.

Please note that installing without a container is not advised unless
you know exactly what you are doing. In this configuration, Fuego will
not be able to manage host-side test dependencies for you correctly.

Please note also that executing without a container presents a
possible security risk for your host. Fuego tests can run arbitrary
bash instruction sequences as part of their execution. So there is a
danger when running tests from unknown third parties that they will
execute something on your test host that breaches the security, or
that inadvertently damages you filesystem or data.

However, despite these drawbacks, there are test scenarios (such as
installing Fuego directly to a target board), where this configuration
makes sense.

About Fuego

Fuego is a test system specifically designed for embedded Linux
testing. It supports automated testing of embedded targets from
a host system, as it’s primary method of test execution.

The quick introduction to Fuego is that it consists of a host/target
script engine and over 100 pre-packaged tests. These are installed
in a docker container along with a Jenkins web interface and
job control system, ready for out-of-the-box Continuous Integration
testing of your embedded Linux project.

The ideas is that in the simplest case, you just add your board,
a toolchain, and go!

Installing Fuego

This page describes the steps to install Fuego on your Linux machine.
It includes detailed descriptions of the operations, for both users
and developers.

Tip

If you are interested in a quick outline of steps, please see
the Fuego Quickstart Guide instead.

Overview

The overview of the steps is:

	Install pre-requisite software

	Download the Fuego repository

	Build your Fuego container

	Start the container

	Access the Jenkins interface

Install pre-requisite software

To retrieve the Fuego software and create the Docker image for it, you
need to have git and Docker installed on your system.

On Ubuntu, try the following commands:

$ sudo apt-get install git
$ sudo apt-get install docker.io

These commands may be different for other distributions of Linux
(such as Fedora, RedHat, CentOS, Mint, etc.)

Overview of remaining steps

Steps 2 through 5 of the installation can be performed with the
following Linux commands:

$ git clone https://bitbucket.org/fuegotest/fuego.git
$ cd fuego
$./install.sh
$./start.sh
$ firefox http://localhost:8090/fuego

These steps and commands will be described in the sections that follow.

Install the Fuego repositories

The Fuego system is contained in 2 git repositories. One repository is
called fuego and the other is called fuego-core. The
fuego-core repository is installed inside the fuego directory, at
the top level of that repository’s directory structure. This is done
automatically during the install of Fuego. You do not need to clone the
fuego-core repository manually yourself.

The reason to have two repositories is that they
hold different pieces of the Fuego system, and this allows
for them to be upgraded independently of each other.

The repositories are hosted on bitbucket.org, under
the the fuegotest account.

Fuego repository

The fuego repository has the code and files used to build the
Fuego docker container. It also has the fuego-ro directory, which
has board definition files, various configuration files,
miscellaneous scripts, and other items which are used by Fuego
for container management or other purposes.

Fuego-core repository

The fuego-core repository has the code which implements the
core of the Fuego test execution engine, as well as the pre-packaged
tests included with the system. This includes the overlay generator,
the results parser, the Fuego shell function library, the directory
of tests, and the main Fuego command line tool ftc.

Downloading the repository

You can use git clone to download the main Fuego repository, like
so:

$ git clone https://bitbucket.org/fuegotest/fuego.git
$ cd fuego

After downloading the repositories, switch to the fuego directory,
as shown in the example.

Note that these git commands will download the ‘master’ branch of the
repository, which is the current main released version of Fuego.

Downloading a different branch

If you are experimenting with an unreleased version of Fuego
in the ‘next’ branch, then please replace the ‘git clone’ command in
the instructions above with these:

$ git clone -b next https://bitbucket.org/fuegotest/fuego.git
$ cd fuego

This uses -b next to indicate a different branch to check out during
the clone operation.

Create the Fuego container

The third step of the installation is to run install.sh to create the
Fuego docker container. While in the fuego directory,
run the script from the current directory, like so:

$./install.sh

install.sh uses Docker and the Dockerfile in the fuego directory
to create a Docker container with the Fuego Linux distribution.

This operation may take a long time. It takes about 45 minutes on my
machine. This step assembles a nearly complete distribution of
Linux, from binary packages obtained from the Internet.

This step requires Internet access. You need to make sure that
you have proxy access to the Internet if you are behind a corporate
firewall.

Please see the section “Alternative Installation Configuratons” below
for other arguments to install.sh, or for alternative installation
scripts.

Fuego Linux distribution

The Fuego Linux distribution is a distribution of Linux based on
Debian Linux, with many additional packages and tools installed.
These additional packages and tools are required for aspects of Fuego
operation, and to support host-side processes and services needed by
the tests included with Fuego.

For example, the Fuego distribution includes:

	the Jenkins continuous integration server

	the netperf server, for testing network performance.

	the ttc command, which is a tool for board farm management

	the python jenkins module, for interacting with Fuego’s Jenkins
instance

	and many other tools, programs and modules used by Fuego and its tests

Fuego commands execute inside the Fuego docker container, and Fuego
operations initiate in the container, but may access hardware (such as
USB ports, networking, or serial ports) that are outside the container.

Configuring for ‘privileged’ hardware access

In many configurations, Fuego can perform its operations using only
network operations. However, depending on the configuration of your
boards, or your lab hardware, and the relationship between your host
and target computers used for testing, you may need to access other
hardware on your host machine.

To do that, you can create a ‘privileged’ Fuego container, using
the --priv options with install.sh:

$./install.sh --priv

Customizing the privileged container

Note that using --priv causes install.sh to use a different
container creation script. Normally (in the non –priv case),
install.sh uses fuego-host-scripts/docker-create-container.sh.
When --priv is used, Fuego uses
fuego-host-scripts/docker-create-usb-privileged-container.sh.

This latter script (docker-create-usb-privileged-container.sh) can
be edited, before running install.sh, to change the set of hardware
devices that the Docker container will have privileged access to.

This is done by adding more bind mount options to the docker create
command inside this script. Explaining exactly how to do this is
outside the scope of this documentation. Please see documentation and
online resources for the Docker system for information about this.

	The script currently creates bind mounts for:
	
	/dev/bus/usb - USB ports, and newly created ports

	/dev/ttyACM0 - serial port 0

	/dev/ttyACM1 - serial port 1

	/dev/serial - general serial ports, and newly created ports

If you experience problems with Fuego accessing hardware on your host
system, you may need to build the Fuego docker container using
additional bind mounts that are specific to your configuration. Do so
by editing docker-create-used-privileged-container.sh, removing the
old container, and re-running ./install.sh --priv to build a new
container with the desired privileges.

Using an different container name

By default, install.sh creates a Docker image called fuego and a
Docker container called fuego-container. There are some situations
where it is desirable to use different names. For example, having
different container names is useful for Fuego self-testing. It can
also used to do A/B testing when migrating from one release of Fuego
to the next.

You can provide a different name for the Fuego image and container, by
supplying one on the command line for install.sh, like so:

$./install.sh my-fuego

This would create a Docker image named my-fuego and a Docker
container named my-fuego-container

Start the Fuego container

To start the Fuego docker container, use the start.sh script.

$./start.sh

Using a different container name

By default, start.sh will start the container named fuego-container
(which is the default Fuego docker container name). However, if you
created a different container name, you can specify the name
on the command line, like so:

$./start.sh my-fuego-container

When you run the start.sh, the terminal where the script
is run will be placed at a shell prompt inside the Docker container.
The session will be logged in as the root user inside the container.
The container will run until you exit this top-level shell.
Therefore, you should leave it (the shell and the terminal that your
ran start.sh from) running for the duration of your testing.

Access the Fuego Jenkins web interface

Fuego includes a version of Jenkins and a set of plugins as part of
its system. Jenkins is running inside the Fuego docker container. By
default the Fuego Jenkins interface runs on port 8090, with an URL
path /fuego.

Here is an example showing use of firefox to access the Jenkins
interface with Fuego

$ firefox http://localhost:8090/fuego

To access the Fuego interface you can use any browser - not just
Firefox.

In your browser, you should see a screen similar to the following:

[image: _images/fuego-1.1-jenkins-dashboard-new.png]
Note that this web interface is available from any machine that has
access to your host machine via the network. This means that test
operations and test results are available to anyone with access to
your machine. You can configure Jenkins with different security to
avoid this.

Access the Fuego docker command line

For some Fuego operations, it is handy to use the command line (shell
prompt) inside the Docker container. In particular, parts of the
remaining setup of your Fuego system involve running the ftc command
line tool.

Some ftc commands can be run outside the container, but other require
that you execute the command inside the container.

To start another shell prompt inside the currently running Fuego docker
container, you can use the script fuegosh. This helper script is
located at: fuego/fuego-ro/scripts/fuegosh. You may find it
convenient to copy this script to a bin directory on your system
(either /usr/local/bin or ~/bin) that is already in your PATH.

If you run fuegosh, it will place you at a shell prompt inside the
Fuego docker container, like so:

$ fuegosh
root@hostname:/#

Remaining steps

Fuego is now installed and ready for test operations. However, some
steps remain in order to use it with your hardware. You need to:

	Add one or more hardware boards (board definition files)

	Add a toolchain

	Populate the Jenkins interface with test jobs

These steps are described in subsequent sections of this documentation.

	See:
	
	Adding a Board

	Adding a Toolchain

	Adding Test Jobs to Jenkins

Alternative installation configurations

The default installation of Fuego installs the entire Fuego system,
including Jenkins and the Fuego core, into a Docker container running
on a host system, which Jenkins running on port 8090. However, it is
possible to install Fuego in other configurations.

	The configuration alternatives that are supported are:
	
	Install using a different TCP/IP port for Jenkins

	Install without the Jenkins server

	Install directly to your host (not inside a container)

With a different Jenkins TCP/IP port

By default the Fuego uses TCP/IP port 8090, but this can be changed to
another port. This can be used to avoid a conflict with a service
already using port 8090 on your host machine, or so that multiple
instances of Fuego can be run simultaneously.

To use a different port than 8090 for Jenkins, specify it after the
image name on the command line when you run install.sh. Note that this
means that you must specify a Docker image name in order to specify a
non-default port. For example:

$./install.sh fuego 7777

This would install Fuego, with an Docker image name of fuego, a
Docker container name of fuego-container, and with Jenkins
configured to run on port 7777

Without Jenkins

Some Fuego users have their own front-ends or back-ends, and don’t
need to use the Jenkins CI server to control Fuego tests, or visualize
Fuego test results. install.sh supports the option ‘–nojenkins’
which produces a Docker container without the Jenkins server. This
reduces the overhead of the Docker container by quite a bit, for those
users.

Inside the Docker container, the Fuego core is still available.
Boards, toolchains, and tests are configured normally, but the ‘ftc’
command line tool is used to execute tests. There is no need to use
any of the ‘ftc’ functions to manage nodes, jobs or views in the
Jenkins system. ‘ftc’ is used to directly execute tests using ‘ftc
run-test’, and results can be queried using ‘ftc list-runs’ and ‘ftc
gen-report’.

When using Fuego with a different results visualization backend, the
user will use ‘ftc put-run’ to send the test result data to the
configured back end.

Without a container

Usually, for security and test reproducibility reasons, Fuego is
executed inside a Docker container on your host machine. That is, the
default installation of Fuego will create a Docker container using all
the software that is needed for Fuego’s tests. However, in some
configurations it is desirable to execute Fuego directly on a host
machine (not inside a Docker container). A user may have a dedicated
machine, or they may want to avoid the overhead of running a Docker
container.

A separate install script, called install-debian.sh can be used in
place of install.sh to install the Fuego system onto a Debian-based
Linux distribution.

Please note that installing without a container is not advised unless
you know exactly what you are doing. In this configuration, Fuego will
not be able to manage host-side test dependencies for you correctly.

Please note also that executing without a container presents a
possible security risk for your host. Fuego tests can run arbitrary
bash instruction sequences as part of their execution. So there is a
danger when running tests from unknown third parties that they will
execute something on your test host that breaches the security, or
that inadvertently damages you filesystem or data.

However, despite these drawbacks, there are test scenarios (such as
installing Fuego directly to a target board), where this configuration
makes sense.

About Fuego

Fuego is a test system specifically designed for embedded Linux
testing. It supports automated testing of embedded targets from
a host system, as it’s primary method of test execution.

The quick introduction to Fuego is that it consists of a host/target
script engine and over 100 pre-packaged tests. These are installed
in a docker container along with a Jenkins web interface and
job control system, ready for out-of-the-box Continuous Integration
testing of your embedded Linux project.

The ideas is that in the simplest case, you just add your board,
a toolchain, and go!

Index

Board Snapshot

Fuego provides a feature to grab a “snapshot” of board status
information and save that along with other data associated with the
run. The idea is that this status information might be helpful for
diagnosing the issue when a problem is encountered during a test
(either test failure or an error during test execution).

This status information is obtained during the snapshot phase of
test execution.

The default snapshot operation saves a few different key pieces of
information including:

	the board’s “Firmware revision”, which is usually the version of
the kernel running on the board, if the board is running Linux.

	the shell environment variables (on the host) during test execution

	the output from ov_rootfs_state.

Currently (as of Fuego version 1.5), the ov_rootfs_state function
saves the following data from the board:

	uptime

	memory usage

	disk usage

	mounted filesystems

	current user processes

	interrupts

The board status data is saved in the file: machine_snapshot.txt
in the log directory for a run (under /fuego-rw/logs).

Overriding snapshot operations

Saving a snapshot on every test invocation may take too long,
or not be needed. Therefore, there are multiple ways to customize
the snapshot operation.

	by omitting the snapshot phase of test execution

	by using a test-specific test_snapshot function

	by using a board-specific ov_rootfs_state function

The snapshot phase of execution is included in the default
list of phases that are executed when a test is run. That is, it
is “turned on” by default. But if the phases are manually enumerated,
this phase can be omitted.

The snapshot phase of test execution is represented by the
character ‘s’. To omit the snapshot phase, specify the list of phases
to run (using the ‘-p’ option with ftc run-test), and don’t include
‘s’ in the list of phase characters for the run.

To override the operation on a per-test basis, a test can define its
own test_snapshot function. If defined, then this function will be
called in place of ov_rootfs_state in the Fuego core. For
example, a networking test may want to save information about the
status of networking devices or connections on the systems, rather
than the default snapshot information.

See test_snapshot for information about
how to define this function in a fuego_test.sh script.

To override the operation on a per-board basis, the function
ov_rootfs_state can can be overridden. This is done by creating a
custom distribution overlay file, and then using the DISTRIB
variable in the board file for a board. For details about
how to override a distribution function, see Adding or
Customizing a Distribution

Dashboard view

Here is some information about the main dashboard view in Jenkins, in
Fuego:

Main screen elements

If you click on “Jenkins” in the upper left
part of any page in the web interface, you will be taken to a page
with the following parts:

	Top of screen are some logos and a search bar

	A navigation bar below that (with a context trail)

	A sidebar of the left of the page with:

	A menu

	A “Build Queue”

	A “Build Executor Status”

	Target status

	The main job panel, which may consists of several tabs, for different
views of the jobs defined in Jenkins. At a minimum, the following tabs
should be present:

	All

	this shows a list of all defined jobs

	+ sign

	this allows you to create a new view of jobs

[image: _images/fuego-1.1-jenkins-dashboard-beaglebone-jobs.png]

Clicking on a job will take you to the dashboard for that job.

Job dashboard

Each job dashboard shows a list of jobs, with some
information about each one. The information shows the status of the
last execution of the test associated with the job, as well as a
“weather report”, indicating the status of the last few runs. There
is also information about the last successful run, the duration of the
last run, and so on.

Changing the interface

Create a new view

It is often handyto see just a subset of the jobs (like those for a
particular board, or those having to do with a specific test area
(like filesystems or networking).

You can create a new view by clicking on the “+” sign, to add a new
tab to the dashboard. Then entering a name, and selecting the “List
View” button. Then press the “OK” button.

At this point you can customize the view. The most important thing in
creating a new view is selecting which jobs to show in the view. You
can select specific jobs by name, or use a regular expression to
select the jobs to display. If you wanted to create a view that
showed all the jobs related to your board ‘myboard’, you could create
a view called ‘myboard’, and under “Job Filters”, check the checkbox
labeled: “User a regular expression to include jobs into the view”.
Then add a regular expression like: ‘myboard.*”

Click OK to save your view, and it should show up as a new tab in the
dashboard view.

Edit an existing view

To see the configuration for each view,
select the tab you want to view/edit, and select “Edit View” in the
left sidebar menu.

For each Dashboard view you can set:

	Name, Description

	Job Filters

	You can select individual tests, or use a regular expression to
include tests in the view

	Columns

	You can add or remove columns, or reorder the columns

	Default columns:

	Status

	Weather

	Name

	Last Success

	Last Failure

	Last Duration

	Build Button

	To remove a column, press the button labeled “Delete”

	To reorder columns, hover your mouse over the column name, then
click and drag the column to the position you would like it, in
the list of columns.

Dependencies

Introduction

Fuego includes a test dependency system that allows Fuego to determine
whether a test can be run on a board or not. The test dependency
system provides an opportunity for Fuego to do an early abort of a
test in case required conditions are not met for the test.

The dependency system allows short-circuiting of test execution. That
is, these dependencies are checked during a pre_test phase, and if the
dependencies are not met, Fuego aborts the test, before the test is
built, deployed and executed on the target.

The dependency system consists of 2 parts:

	A set of test variables in the base script that specify needed attributes
of the device under test. These dependencies are expressed as statically
declared “NEED_” variables in fuego_test.sh

	The ability to define a test function, test_pre_check, that is called before the test executes,
which can test for arbitrary conditions

In the future, it intended that this feature will allow for
automatically detecting what tests are applicable to particular
boards.

NEED variables

A test can declare variables (called ‘NEED’ variables) that describe
attributes of the device under test, in the fuego_test.sh script.

The following NEED variables are currently supported:

	NEED_MEMORY

	NEED_FREE_STORAGE

	NEED_ROOT

	NEED_KCONFIG

	NEED_MODULE

These variables are usually declared after the source reference
definition, and before the first function declaration in fuego_test.sh

Declaration example

Here is an example, from Benchmark.signaltest:

This shows the first few lines of fuego_test.sh for this test

tarball=signaltest.tar.gz

NEED_ROOT=1

function test_build {
 make CC="$CC" LD="$LD" LDFLAGS="$LDFLAGS" CFLAGS="$CFLAGS"
}
...

NEED_MEMORY

The NEED_MEMORY variable is used to require that the board have a
certain amount of free memory, for the test to run. The value is
expressed in either bytes, kilobytes, megabytes, gigabytes or
terabytes.

The value is declared as an integer number (base 10) followed by an
optional prefix - one of ‘K’, ‘M’, ‘G’, ‘T’.

Here are some examples:

	NEED_MEMORY=500K

	NEED_MEMORY=2G

	NEED_MEMORY=1500000

As a technical detail, the value specified is compared with the value
of MemFree in /proc/meminfo of target board.

NEED_FREE_STORAGE

The NEED_FREE_STORAGE variable is used to require that the board have
a certain amount of free storage, in the filesystem where the test
needs it, in for the test to run. The value is expressed in either
bytes, kilobytes, megabytes, gigabytes or terabytes. The value of
NEED_FREE_STORAGE is usually provided with 2 strings - a string
indicating the required size, and a directory to check.

Most tests are executed in the directory specified by $BOARD_TESTDIR,
so that is often the second string provided. However, if a test needs
space somewhere else in the filesystem (besides where the test
normally runs), this can be specified directly (statically), or via
some other test variable. If no second string is provided, the
specified value of free storage required is compared with the amount
of available storage in the root filesystem.

The value required is declared as an integer number (base 10) followed
by an optional prefix - one of ‘K’, ‘M’, ‘G’, ‘T’.

Here are some examples:

	NEED_FREE_STORAGE=2G

	NEED_FREE_STORAGE=”50M $BOARD_TESTDIR”

	NEED_FREE_STORAGE=”5T /media/raid-array”

As a technical detail, the value specified is compared with the value
of the ‘Available’ column returned by df for the indicated
directory.

NEED_ROOT

This variable is declared if a test required to be executed with
‘root’ privileges. In that case, the following should be added to the
test script:

	NEED_ROOT=1

NEED_KCONFIG

This variable is used to check that one or more kernel configuration
options have specified values.

The NEED_KCONFIG line can list more than one kernel config option.
Each option is of the form: CONFIG_OPTION={value}. Currently, the
value must be one of: ‘y’ or ‘n’.

Here are some examples:

	NEED_KCONFIG=”CONFIG_PRINTK=y”

	NEED_KCONFIG=”CONFIG_LOCKDEP_SUPPORT=n”

	NEED_KCONFIG=”CONFIG_USB=y CONFIG_USB_EHCI_MV_U20=y”

Technical detail: The kernel configuration is searched for in the
following locations, on the target, in order:

	/proc/config.gz

	/boot/config-$(uname -r) and on the host at:

	$KERNEL_SRC/.config

If NEED_KCONFIG is defined, but if the kernel configuration of the
target board can not be found, then the dependency check fails.

Note

it is intended that the kernel build system will set the board
variable KERNEL_SRC, for use by the Fuego system (but this is not
implemented yet).

NEED_MODULE

This variable indicates that a test needs a particular module loaded
on the system, in order to run.

Here is an example:

	NEED_MODULE=bitrev

Note

it’s unclear that this is a good way to detect a kernel feature
needed for a test. Any module that is upstream can also be included in
the kernel statically. Testing for a driver or feature as a module would
miss that configuration.

test_pre_check

A test base script (fuego_test.sh) can provide a function called
test_pre_check where arbitrary commands
can be run, to determine if the device under test (the board) has the
required features or hardware for the test.

This function, if present, is run during the pre_test phase of text
execution. Thus, if prerequisite conditions are not met, the test can
abort early and avoid the additional test phases (build, deploy, run,
etc.)

The following functions are commonly used in the test_pre_check routine:

	assert_define

	is_on_target

	is_on_target_path

	assert_has_program

	is_on_sdk

	abort_job

For examples of how to use these functions, see the individual
documentation pages for the functions (linked above).

Addtionally, the test_pre_check function can execute any additional
code it wants (using the cmd function), in order to query the target
during this phase, for required capabilities. Or, it might check
conditions on the host, network, or extended test environment, to
verify that conditions are ready for the test.

This might include checking for things like:

	mounted file systems

	network connections

	required hardware

	auxiliary test harness availability and preparation

Envisioned features

In the future, the test dependency system may be used to allow a Fuego
user to select tests which are appropriate for the hardware or
distribution that they have.

Fuego does not currently have thousands of tests. But in a future
where there ARE thousands of tests, it will be overwhelming to the
test user to select those tests which are of interest for their
hardware. The test dependency system will allow Fuego to
automatically compare the features or hardware required for a test,
with the features and hardware of a board, and decide if a test is
compatible or relevant for that board.

When Fuego has a test “server”, this can be used as a matching service
to select tests for execution on boards that have specific features or
hardware. When Fuego has a test “store”, then the dependency system
can be use to filter the tests to only those that are relevant to
their testing needs.

The NEED variables are declarative, rather than imperative (like the
test_pre_check function), so that it will be possible to develop an
automated system to do this matching (between test and board).

Docker Tips

Here are some tips for using docker with Fuego:

Starting

After the container is created, you should start it by running:

./start.sh

This calls:

./fuego-host-scripts/docker-start-containter.sh

With no arguments, this will start the container named
fuego-container. However, if you have a multiple fuego containers,
or have a container with a different name, you can specify the
container name on the start.sh command line.

Special privileged container

To run the container in a special privileged mode that allows access
to host USB devices (needed for accessing Android targets and
USB-SERIAL devices), create it using the “–priv” command line option
to ./install.sh:

./install.sh --priv

This will call
./fuego-host-scripts/docker-create-usb-privileged-container.sh
to create a container with extra privileges to certain host devices.

This script includes a set of devices that the container is granted
access to. However, you may need to add a new device to the list. To
add a new device to be accessible inside the docker container, please
edit the following line in docker-create-usb-privileged-container.sh:

CONTAINER_ID=`sudo docker create -it --privileged -v /dev/bus/usb:/dev/bus/usb -v /dev/ttyACM0:/dev/ttyACM0 ... --net="host" fuego`

With above, only “ttyUSBx” and “ttyACM0” will be detected and accessible inside
the docker container.

Operations while running

	Show the running docker ID

	sudo docker ps

	Execute a command in the container

	docker exec <id> <some_command>

	Attach another shell inside the container

	sudo docker exec -i -t <id> bash

	There is a helper script called ‘fuegosh’ which can be used to get a shell
inside a currently running Fuego container

	see fuego-core/scripts/fuegosh

	Access docker container using ssh

	ssh user@<ip_addr> -p 2222

	sshd is running on 2222 in the container, if the default sshd_config is used

	Copy files to the container

	docker cp foo <id>:/path/to/dest

	Copy files from the container

	docker cp <id>:/path/to/src/foo bar

Exiting

To exit the docker container, just exit the primary shell that started
with the container when it was started.

Persistence

The Fuego container uses docker bind mounts so that some files persist
in the host filesystem, even when the container is not running.

In the host system, these are under fuego-ro, fuego-rw and
fuego-core in the directory where the container was created.

Here are some files that persist:

	fuego-ro/boards* - for board definition files

	fuego-ro/conf/ttc.conf - for use with ttc targets

	fuego-ro/toolchains - this is where toolchains and SDKs can be installed

	fuego-ro/toolchains/tools.sh - this file has the multiplexor for the different
toolchains (on the PLATFORM variable)

	fuego-rw/logs - this has logs from executed test runs

	fuego-rw/work

	fuego-rw/buildzone - this is where test programs are built

	fuego-rw/test - place where the board ‘docker’ places test materials

How to determine if you’re inside the container

	grep -q docker /proc/1/cgroup ; echo $?

	Will be 0 if inside the container, 1 if on host

Cleaning up old images

I build lots of docker images, and they leave lots of data around.

	docker ps -a - show docker containers on your system, and their images

	docker rm <id> - remove a container

	docker images - show images on your system, and their age and size

	docker rmi <id> - remove an image (you must remove any containers using this image first)

Copy/Replace a file into a non-running container

Background:

Consider a case where you make some changes to
/etc/default/jenkins
file when your container is running, and then you restart the
container. Unfortunately your container may not start because of an
issue in the /etc/default/jenkins file. How do you fix it as the
container itself is not running?

Solution:

Get the container id (of the non-running container) via

$ 'docker ps -a' command

Replace the faulty file with original/corrected one via ‘docker cp’
command as shown in the example below.

$ sudo docker cp jenkins 6b4e6e63rfg7:/etc/default/

where ‘6b4e6e63rfg7’ is the container id of the non-running container

Now you will able to start the docker container successfully.

FUEGO BUILD FLAGS

This variable may be defined in a board file or in a tools file, and
is used to specify build attributes for test programs built by Fuego
for that board or toolchain (respectively)

Currently, this can only have the value: no_static

Other values may be supported (in a space-separated list) in the
future.

By default, many Fuego tests will attempt to build static binaries, as
these require less dependencies on the target. However, some
toolchains do not support compiling static binaries. For such a toolchain,
this flag should be used in the toolchain shell script,
to indicate to the Fuego build system to build dynamic programs
instead.

This flag can also be used in a board file,
to indicate to the Fuego build system to build dynamic programs
for that board (whether or not the toolchain supports static
linking or not).

Example: put this line in a toolchain setup script,
(/fuego-ro/toolchains/$TOOLCHAIN-tools.sh) or in your board
configuration file (/fuego-ro/boards/myboard.board):

FUEGO_BUILD_FLAGS="no_static"

FUEGO DEBUG

Note

FUEGO_DEBUG is now deprecated. Please used the newer
FUEGO_LOGLEVELS feature instead of this.
As of Fuego version 1.4,
FUEGO_DEBUG is still supported for backwards compatibility.

The environment variable FUEGO_DEBUG is used to control debug output
during execution of a Fuego test.

If this variable is not set, no debugging messages (or less messages)
are produced.

The variable is a bitmask. If it is defined at all, then the script
system will produce shell trace messages as part of the test log.

The following bitmask values can be used to turn on debugging for
different parts of the system:

	1 = debug the main execution of test phases

	2 = debug the parser

	4 = debug the criteria processor

	8 = debug the chart generator code

Combinations are allowed, but must be in decimal.

Example:

export FUEGO_DEBUG=15

This would turn on debug messages for all areas.

FUEGO LOGLEVELS

The environment variable FUEGO_LOGLEVELS is used to control message
output (including debug messages) during execution of a Fuego test.

Introduction

The FUEGO_LOGLEVELS variable specifies a string containing a list of
areas and log level combinations, separated by commas. The area and
loglevel are joined by a colon.

Here is an example:

export FUEGO_LOGLEVELS="deploy:verbose,criteria:debug"

Note that a sample of this line is provided in the Jenkins job for
every test. It is, by default, commented out. However, you can easily
turn on FUEGO_LOGLEVELS by uncommenting this line. You can customize
the log level to use for different execution areas by changing the
value of the variable.

To change this line in a Jenkins job, select the job in the Jenkins
interface, then select “Configure”, and edit the line in “Execute
Shell - Command” box, in the “Build” section of the job configuration.

If the FUEGO_LOGLEVELS variable is not set, the default logging level
for all areas of test execution is “info”.

Log levels

There are 5 logging levels available, and messages from Fuego are
categorized into these 5 different levels:

	error

	warning

	info

	verbose

	debug

Specifying a particular level means that all messages above that level
will be output. Messages at level ‘error’ are always shown, no matter
what log level is specified.

Execution areas

Area names correspond to phases, and to sub-phases of the test
execution stepx.
The following area names are supported:

	pre_test

	pre_check

	build

	makepkg

	deploy

	snapshot

	run

	post_test

	processing

	parser

	criteria

	charting

Output functions

With this feature, 5 new functions have been added to the Fuego core.
These functions may be used in your test shell script (fuego_test.sh), so
that your output may be managed the same way that core output is managed.

The following functions are available:

	dprint - print output if the message level is ‘debug’.

	vprint - print output if the message level is ‘debug’ or ‘verbose’.

	iprint - print output if the message level is ‘debug’, verbose’,
or ‘info’.

	wprint - print output if the message level is ‘debug’, ‘verbose’,
‘info’, or warning’.

	eprint - print output always (message level ‘error’)

Deprecated FUEGO_DEBUG

FUEGO_LOGLEVELS replaces the earlier FUEGO_DEBUG
variable for controlling debug output of Fuego. However, as of Fuego
version 1.4, FUEGO_DEBUG is still supported for backwards
compatibility.

Fuego charting

Fuego has the capability of creating charts (either plots or tables)
from results data. These charts are used either in the Jenkins
interface, or in reports generation.

This page has a few notes on Fuego’s charting features, for users.

Charts are produced during the “processing” phase of test execution.
This is done after the test results have been parsed from the test log
and the results placed in the unified output format (run.json) file.

The chart output for a test is controlled via a file called
chart_config.json, which is located in a test’s home directory.
If the chart_config.json file is missing, then Fuego produces a
chart using a default configuration, depending on the type of the
test. For a Benchmark test Fuego will produce a measure plot by
default, and for a Functional test Fuego will produce a testcase
table.

Use the following resources to find out more about Fuego’s charting
features.

References

See Jenkins Visualization for information about the different
charts that are produced by Fuego for the Jenkins interface, and the
relationship between Fuego and Jenkins elements used in results
visualization.

See the documentation for the process
function (which is found in the parser library) for information about
the files used during the processing phase, and how that relates to
Fuego charting.

Finally, for information about the different chart types and
configuration options for charts supported by Fuego, see
chart_config.json.

Fuego configuration file

The Fuego configuration file contains configuration options and
settings for the Fuego test system.

The following settings are supported:

Fuego test network settings

These settings are used when a host participates in a Fuego test
network. This refers to distributed operations between Fuego labs,
and not to the test network within a single Fuego lab.

host_name

host_name is used to specify a name for this instance of Fuego, within
the worldwide Fuego test network (or within a company Fuego network).
The default value for host_name is ‘fuegohost’. If this site
participates in distributed testing, the host_name should be set to
something unique, which describes the host. For example, my lab uses
a Fuego host name of “timslab”.

During test execution, this value appears in the environment variable
FUEGO_HOST.

A host_name value should only consist of letters, numbers and
underscores. No other punctuation is allowed.

user

The user configuraton item is used to specify the user performing
operations from this lab in the test network. The value of this is an
arbitrary string of characters. It is passed in network requests to
the remote server.

server_type

The server_type setting indicates the type of server that Fuego
will use for remote operations and backend services. This may
have one of the following two values:

	fuego - indicates an ‘fserver’ type server (native Fuego remote
server)

	squad - indicates a squad server

For a ‘fuego’ server, ftc can be used to submit requests, submit
tests, retrieve tests, execute requests, and push results.

For a ‘squad’ server, ftc can put results to the server.

server_domain

The server_domain setting indicates URL where the remote server
may be contacted to retrieve requests or push results. The
server_domain should include the domain name or IP address of the
test system server. It may optionally include a URL prefix that is
appended to requests to the server as part of the URL path.

This is a site where fuego tests can be uploaded and downloaded, and
where run requests can be posted and retrieved, and run data can be
uploaded for sharing.

By default, the value for this is ‘fuegotest.org/cgi-bin’, which is
the main Fuego web site and test dispatch service for Fuego. If an
organization is running its own Fuego server, it should specify the IP
address or domain name (and any required URL prefix) for their own
server.

Here is an example of the settings for Fuego to use an fserver
remote server:

server_type=fuego
server_domain=fuegotest.org/cgi-bin

Squad settings

The following settings are unique to squad servers.

	server_squad_token - has the authentication token needed to communicate
with the squad server

	server_squad_team - has a squad team name to receive results

	server_squad_project - has a squad project name to receive results

Here is an example configuration for Fuego (ftc) to communicate
with a squad server:

server_type=squad
server_domain=squad.mycompany.com:8000
server_squad_token=sdf9s8s9fasd7fsagsdfg9asg9asdfasfas7dfas
server_squad_team=fuego
server_squad_project=myproject

Fuego directories

Fuego data and programs are located in three directories, used for
read-only data, read-write data, and a core system directory. These
variables are normally located as top directories inside the Fuego
source repository, as well as at hardcoded locations within the docker
container. However, they are specified in the fuego configuration
file so that the directories may be placed elsewhere if this is
convenient.

Each of these directories is normally specified as a file path
relative to the directory where the fuego.conf file resides. However,
absolute paths are allowed. If absolute paths are used, then the bind
mounts for the docker container should be such at the same absolute
paths can used both inside and outside the docker container to access
these directories. For example, you could re-configure Fuego to use
directories under /opt/fuego both inside the container and on the
host.

fuego_ro_dir

This indicates the location of the Fuego read-only data directory.
The default value is “..”, since the fuego.conf file usually resides
in the directory fuego-ro/conf.

Some important directories that reside in the fuego-ro directory are
the conf, boards and toolchains directory.

fuego_rw_dir

fuego_rw_dir indicates the location of the Fuego read-write data
directory. The default value for fuego_rw_dir is ../../fuego-rw

Some important directories that reside in the fuego-rw directory are
the buildzone and logs directories.

fuego_core_dir

The fuego_core_dir indicates the location of the Fuego core
directory, which has the main scripts, programs, data and source code
that make up the Fuego test system. The default value for
fuego_core_dir is ../../fuego-core.

Configuration file syntax

The configuration file uses a very simple name=value syntax. Most
settings consist of a single line. Empty lines are ignored, and lines
starting with a ‘#’ character are interpreted as comments and are
ignored.

If a setting value requires multiple lines, it is enclosed in
triple double-quotes, like a python multiline string.

Example:

this is a comment
variable=value
multi_line_variable="""foo
 bar
baz baf
"""

Fuego directories

This page describes the Fuego directory structure,
and what the items in each area are used for.

In the ‘fuego’ source repository

	docs - contains documentation for the Fuego system

	frontend-install - has material for configuring the Jenkins
installation for Fuego

	plugins - has plugins installed to Jenkins in the docker container

	flot-plotter-plugin source for the flot plotting plugin

	fuego-host-scripts - contains scripts for creating and launching
the Fuego container

	fuego-core - has the Fuego core scripts and tests. This directory
is a separate git repository, populated during installation.

	fuego-ro - has runtime data used by the Fuego system in the container

	fuego-rw - has runtime data used by the Fuego system in the container

Inside the container

	/fuego-core - the fuego core directory, containing tests,
scripts and the overlay generator for executing Fuego tests.
This is bind-mounted to the fuego-core repository on the host
when the Fuego container is created.

	engine (deprecated) - symlink for backwards compatibility
with older versions of Fuego tests. Use of ‘engine’ in a Fuego
directory path should be avoided in all new code.

	overlays - contains the Fuego “class” system of shell functions
for performing board-related operations.

	base - contains the base Fuego functions and variables

	distribs - contains files for defining functions for different
distributions that a board might be running

	testplans (deprecated) - contains testplan files (in json format)

	test_specs (deprecated) - contains test spec files (in json format)

	scripts - core scripts which implement the Fuego test framework

	tests - materials for the actual Fuego tests

	Benchmark.foo - has the tarfile, patches, base script,
parser.py, test.spec and other files, for a particular
benchmark test

	Functional.bar - has the tarfile, patches, base script,
test.spec and other files, for a particular functional test

	/fuego-ro - has read-only data used by Fuego.
This is bind-mounted from inside the container to the host system.

	boards - place for board configuration files

	conf - place where Fuego configuration is stored

	toolchains - place for toolchain data and installation scripts

	/fuego-rw - has runtime data used by the Fuego system in the
container, and actually stored on the host (for persistence).
This is bind-mounted from inside the container to the host system

	boards - place for writable board-specific data

	<board_name> - place for artifacts for a particular board

	buildzone - place where test programs are built

	Functional.<test_name>-<toolchain_name> - directory for build
materials for a test and toolchain combination

	logs - place where test run logs are stored

	<test_name> - log and result files for a test

	<board>.<spec>.<build_id>.<build_number> - the ‘run’ directory
for a test execution. Some of the files in this directory are:

	consolelog.txt - link to Jenkins console log, or local file,
if test was executed using ftc

	devlog.txt - the developer log for a test - list of operations
executed during the test

	machine-snapshot.txt - information about the system immediately
prior to test execution

	prolog.sh - test environment variables and functions used
at test execution time. These are derived from definitions in
overlay files (fuegoclass files) and from spec files.

	run.json - test run file. This has the results of the test
in a formatted file.

	syslogs.<time>.txt - system logs for test runs (from the target)
(before the test and after the test)

	testlog.txt - test log for a test run. This has the output
from the actual test program execution.

	/var/lib/jenkins - Jenkins system configuration and data files

	jobs - holds the Jenkins test definition files
(config.xml for each test) as well as test output for each test run

	<jobname>

	builds - data about all test runs for this test

	<build_number> - jenkins data and console log for a
particular test run (build.xml and log)

	plugins - place where Jenkins stores plugin code and data

	userContent - material that is served by Jenkins for the user
interface

	docs - has the Fuego PDF documents

	fuego.logs - link to /fuego-rw/logs - so that logs are accessible
from Jenkins user interface

	updates - used for Jenkins update operations

	logs - has Jenkins process logs

	slaves - has Jenkins control logs for each target board

	<target> - has the slave logs for the indicated target

Jenkins

Jenkins is a continuous integration system with a lot of features and
a rich plugin ecosystem. It is used as the default front end (user
interface) for the Fuego test framework.

The Jenkins website is at: https://jenkins.io/

How Jenkins is used by Fuego

Jenkins is used as the default graphical user interface to Fuego, for
managing tests executed by the system. It serves as both the “front end”
and the “back end” user interface for the system.

Jenkins is used on the “front end” to organize the tests provided by
Fuego, and present the user interface (UI) for test selection, test
configuration, and test execution.

Jenkins is also used to see the tests for a particular set of boards.

Jenkins also provides the triggers for the test system. That is,
Jenkins initiates jobs, based on events, timeframes, or polling of
the status of things.

On the “back end”, Jenkins is used to monitor the execution of tests,
and to show test status and results. Via the Jenkins interface, the
user can find out information about a test, the history of test
results, and view logs from test runs. Jenkins provides the
visualization of test results for users to view. (See
Jenkins Visualization.

Nomenclature

Jenkins was originally developed as a build-time continuous integration
system, and uses a few different terms for operations than Fuego does.
For example, a test definition in Jenkins is called a “job” This is
the set of configuration items about a test that are used to execute
it. The data associated with an actual execution of a test is called
a “build”. In Fuego, these are called “test” and “run” respectively.

Miscelaneous notes

	builds are marked by Jenkins as: successful, failed, stable, unstable.

	a freestyle build is successful if the return code from executing
the code snippet is 0

	a freestyle build is considered ‘failed’ if
the return code from executing the code snippet is non-zero

	a build is stable unless explicitly marked otherwise by some
Jenkins action

	they are usually marked in a post-test operation, by
something like TextFinder, groovy, or some other thing

	see http://stackoverflow.com/questions/8148122/how-to-mark-a-build-unstable-in-jenkins-when-running-shell-scripts

Jenkins Visualization

Fuego test results are presented in the Jenkins interface via a number
of mechanisms.

Built-in Jenkins status

Per-job data

Jenkins automatically presents the status of the last few tests (jobs)
that have been executed, on the job page for those jobs.

A list of previous builds of the job are shown in the left-hand pane
of the page for the job, showing colored balls indicating the test
status. A green ball indicates that the test passed, and a red
ball indicates that the test failed.

Build history

Jenkins can also show “Build History” pages for all tests, for the tests
in a particular view, or for the tests for a particular node.
The build history page for each of these selections will show a timeline
chart with balls and job names indicating the time and status for those
tests, as well as a status table indicating the results for the
indicated set of items (all builds, or builds associated with a node
or a view)

The build history can be dragged left or right to see different
time periods of the build results. Drag the top portion of the
graph to drag by days, and the bottom portion to drag by hours.

flot plugin for Fuego results

On the right side of the page for a job is an area where a chart (graph or
table) will appear. Fuego uses a plugin (called ‘flot’) that it installs
in Jenkins to provide visualization of Fuego test results.

For benchmarks, the results are shown as plots (graphs) of measure data,
and for functional tests, tables are shown with either individual
results for each testcase, or summary data for the testsets in the test.

See flot for more information.

Charting details

Fuego results charts consists of either plots (a graph of results
versus build number) or tables (a table of results versus build
number).

There are 4 different chart output options:

	A plot of benchmark measures (called “measure_plot”)

	a table of benchmarks measures and reference values (called “measure_table”)

	A table of testcase results (called “testcase_table”)

	A table of testcase summary counts per testset (called “testset_summary_table”)

A user can control what type of visualization is used for a test using
a file called chart_config.json. This file is in the test
directory for each individual test. See the wiki page for that file
for additional details.

Scope of data displayed

By default, the page for a particular job shows the data for all of
the specs and boards related to the test. This can be confusing, but
it allows users to compare results between boards, and between
different test specs for the same test.

For example, a job that runs the test Benchmark.bonnie, using the
‘default’ test spec job (e.g. board1.default.Benchmark.bonnie) shows
results for:

	Boards: board1, and also other boards

	Specs: default, noroot

	Measures: (the ones specified in chart_config.json)

Detailed chart information

Internally, output (by the flot module) is controlled by a file
called: flot_chart_data.json

Inside that, there is a data structure indicating the configuration
for one or more charts, called the chart_config. This is placed there
during chart processing, by the results parser system. A section of
that file, the chart_config element, is a direct copy of the data from
chart_config.json that comes from the test directory for the test.

Information flow

The internal module prepare_chart_data.py is used to generate
flat_plot_data.txt. The data in this file is stored as a series of
text lines, one per result for every testcase in every run of the
test. This file is stored in the top level log directory for a
test. For example
/fuego-rw/logs/Functional.hello_world/flat_plot_data.txt has the
“flattened” test results for all runs of the ‘hello_world” test.

This file is then used to create a file called flot_chart_data.json,
which has the data pre-formated as either ‘flot’ data structures, or
HTML tables.

A file called chart_config.json is used to determine what type of
charts to include in the file, and what data to include.

Here’s a diagram of this data flow:

Note

Programs are in rectangles, and data files are the shapes with a
curved bottom line. Items that are part of a test are in light purple.
Items that are part of the Fuego parsing core are in light red. And
the items in Javascript (or Jquery) that are integrated into Jenkins
are in green.

[image: _images/Fuego-charting-drawing.png]
The flot program mod.js is used to draw the actual plots and tables
based on flot_chart_data.json. mod.js is included in the web page for
the job view by Jenkins (along with the base flot libraries and jquery
library, which flot uses).

measure_plot

A measure_plot is a graph of measures for a benchmark, with the
following attributes:

title=<test>-<testset>
X series=build number
Y1 series=result
Y1 label=<board>-<spec>-<test>-<kernel>-<tguid>
Y2 series=ref
Y2 label=<board>-<spec>-<test>-<kernel>-<tguid>-ref

It plots measures (y) versus build_numbers.

Here’s example data for this:

"charts": [
 { # definition of chart 1
 "title": "Benchmark.fuego_check_plots-main.shell_random"
 "chart": {
 "chart_type": "measure_plot",
 "data": [
 {
 "label": "min1-default_spec-Benchmark.fuego_check_plots-v4.4-main.shell_random",
 "data": [["1","1006"],["2","1116"]],
 "points": {"symbol": "circle"}
 },
 {
 "label": "min1-default_spec-Benchmark.fuego_check_plots-v4.4-main.shell_random-ref",
 "data": [["1","800"],["2","800"]],
 "points": ["symbol":"cross"}
 }
]
 # note: could put flot config object here
 }
 }
]

measure_table

A measure_table is a table of test spec with the following attributes:

	row=(one per line with matching testspec/build-number in flat_chart_data.txt)

	columns=test set, build_number, testcase value, testcase ref value, testcase
result(PASS/FAIL), duration

	Sort rows by testspec, then by build_number

Here was the format of the first attempt:

title=<board>-<test>-<spec> (kernel)
headers:
 board:
 kernel(s):
 test spec:

 | build number
measure items | test set | b1 | b2 | b3 | bN |
X1 | <ts1> | value1 | value2 | value3 | valueN |
X1(ref) | <ts1> | ref(X1)| ref(X1)| ref(X1)| ref(X1)|
<bn> | <ts2> | ...
 (row-span | <ts2> | ...
as appropriate)| <ts3> | ...
<b2n> | <ts3> | ...

And, ‘valueN’ is displayed in a correct color, e.g. GREEN if value1 is
in the expectation interval specified by ‘ref’, otherwise in RED, so
that we can display more info in a chart.

testcase_table

A testcase_table is a table of testcases (usually for a functional
test), with the following attributes:

This shows the result of only one run (the latest)

Tim’s testcase table has:
(one table per board-testname-testset)

overall title=<test>
header:
 board
 kernel version
 spec?
 filesystem
 test directory?
 command line?
--
tguid | results
 | build_number |
 | b1 | b2 | bn |
<tguid1>|result1|result2|resultn|
 totals
pass: | | | |
fail: | | | |
skip: | | | |
error:| | | |
--

testset_summary_table

A testset_summary_table is a table of testsets (usually for a complex
functional test) with the following attributes:

	row=(one per line with matching testset/build-number in flat_chart_data.txt)

	columns=test set, build_number, start_time/timestamp, testset pass count, testset fail count, duration

	Sort rows by testset, then by build_number

title=<board>
headers:
 board:
 kernel(s):

 | counts
build number | test set | pass | fail| skip | err |
<bn> | <ts1> |
 (row-span | <ts2> |
as appropriate)| <ts3> |
<b2n> | <ts1> |
 | <ts2> |

It shows testset summary results by runs

Structure of chart_data.json

Here’s an example:

{
 "chart_config": {
 "type": "measure_plot"
 "title:": "min1-Benchmark.fuego_check_plots-default"
 "chart_data": {
 data
}

Planned for the future

In future releases of Fuego, additional chart types are envisioned:

A fifth chart type is:

	A plot of testcase summary counts per testset (called testset_summary_plot)

testset_summary_plot

A testset_summary_plot is a graph of testsets (usually for a complex
functional test) with the following attributes:

title=<board>-<spec>-<test>-<kernel>
X series=build number
Y1 series=pass_count
Y1 label=<board>-<spec>-<test>-<kernel>-<testset>-pass
Y2 series=fail_count
Y2 label=<board>-<spec>-<test>-<kernel>-<testset>-fail

It graphs testset summary results versus build_ids

Feature deferred to a future release

	Ability to specify the axes for plots in chart_config

	Ability to specify multiple charts for a single result data set in chart_config

Architecture for generic charting

This section has notes about how the current data and structures can be
manipulated in a generic way to generate charts with different layouts
and fields. This is for reference for future implementation of
additional chart types in the future.

Assuming you have a flat list of entries with attributes for
board, testname, spec, tguid, result, etc., then you can use treat this like
a sql database, and do the following:

	Make a list of charts to build

	Have a chart-loopover-key = type of data to use for loop over charts

	Or, specify a list of charts

	Define a key to use to extract data for a chart (the chart-key)

	For each chart:

	Make a list of rows to build

	Have a row-loopover-key = filter for rows to include

	Or, specify a list of rows

	Define a key to use to extract data for each row

	If sub-columns are defined:

	Make a sub-column-key

	Make a two-dimensional array to hold the sub-column data

	For each entry:

	Add the entry to the correct row and sub-column

	Sort by the desired column

	Output the data in table format

	Loop over rows in sort order

	Generate the html for each row

	Loop over sub-columns, if defined

	Return html

There’s a similar set of data (keys, looping) for defining plot data,
with keys selecting the axes.

Log files

During test execution, Fuego collects several different logs.

These represent different aspects of the system, and are used for
different purposes.

Here are the main logs collected or generated during a test:

	console log

	devlog

	syslog

	test log

These are located in the ‘run’ directory (also know as the ‘log’
directory), at:
/fuego-rw/logs/<test_name>/<board>.<spec>.<build_id>.<build_number>

Results logs

These logs are the results of test execution, and have output from
different parts of the system.

console log

The console log is collected by Jenkins during the entire execution of
the test. It is primarily filled with data from the invocation of the
test base script, which is executed as a shell script, with the ‘set -x’
parameter set.

When debug options are turned on, then each line of the test shell
script is output and put into the console log as it is executed. During
execution of the base script, several “source” statements are
encountered, nesting the invocation of scripts multiple times. The
number of ‘+’ signs preceding a line in the console log indicates the
depth (or invocation nesting level) for that line, in the shell
execution.

There are “phase” messages added to the log during the test, which
help identify which part of the test a particular sequence is in.
This can help you debug what part of a test (pre_test, build, deploy,
run, post_test, etc.) is failing, if any.

The location of the console log for a test run is at:
/fuego-core/lib/jenkins/jobs/<jobname>/builds/<build_number>/log

If a test was executed by ftc instead of Jenkins (that is, directly
from the command line), then the consolelog is in the Fuego log
direcotry and is called: consolelog.txt

devlog

This is a summarized list of operations performed during the execution
of a test. These entries are created when internal routines use the
function report_devlog to add a line to
this log.

The name of the devlog for a test run is devlog.txt

syslog

The syslog records the messages from the target system’s log. There
are two of these recorded, one during the pre_test (called the
“before” log), and one during the post_test (called the “after” log).

This includes messages from the kernel (if a logger is transferring
the messages from the kernel to the system log), as well as messages
from programs running on the system (that output to their status to
the syslog).

The names of the syslogs for a test are:

	syslog.before.txt

	syslog.after.txt

test log

This is the output produced by the test program itself. It is
collected with the report and report_append functions, which
save the standard output from the commands they run into a log file
which is retrieved from the target at the end of the test.

The name of the test log for a test is: testlog.txt

Summary

In the Fuego version 1.5 (released in 2019), the log directories are as
follows:

	Fuego logs:

	/fuego-rw/logs/<testname>/<board>.<spec>.<build_id>.<build_number>

	run.json - saved by test itself

	devlog.txt - written by report_devlog

	syslog.before.txt - saved by ov_rootfs_logread (dump_syslogs)

	syslog.after.txt - saved by ov_rootfs_logread

	testlog.txt - saved by get_testlog

	consolelog.txt - created by ftc (or link to Jenkins console log)

	jenkins files:

	/var/lib/jenkins/jobs/<jobname>/builds/buildnum/

	build.xml

	changelog.xml

	log - console log created by Jenkins

	per-test data files:

	/fuego-rw/logs/<testname>

	flat_plot_data.txt - has results data in “flat” ASCII text format

	flot_chart_data.json - has chart data in json and HTML format

Overlay Generation

Overlay generation refers to the process of converting overlay files
into a test variable script. This allows for board files and base
test scripts to override functions and variables in the base fuego
system with customized versions. This implements a weak form of
object-orientated programming.

At run time, the base test script is sourced. This in turn sources
the fuego test system. During that ‘source’ operation, environment
variables (NODE_NAME and DISTRIB) are used to select the .board and
.dist files for the target. These files, in turn, can inherit and
include definitions of variables and functions from other files
(called “overlay” or “class” files).

The program ovgen.py is called to read the .board and .dist files, and
to combine the information in these with the overlay files, and
finally to also add information from the testplans and test spec
files, to create a single unified prolog script. This script is
called the test variables file and is sourced into the running
script, to provide final definitions for functions and variables used
during test execution.

The call to ovgen.py looks like this:

$OF_OVGEN $OF_CLASSDIR_ARGS $OF_OVFILES_ARGS $OF_TESTPLAN_ARGS $OF_SPECDIR_ARGS $OF_OUTPUT_FILE_ARGS

Which expands to something like:

/fuego-core/engine/scripts/ovgen/ovgen.py \
 --classdir /fuego-core/engine/overlays//base \
 --ovfiles /fuego-core/engine/overlays//distribs/nologger.dist \
 /fuego-core/engine/overlays//boards/qemu-arm.board \
 --testplan /fuego-core/engine/overlays//testplans/testplan_default.json \
 --output /fuego-rw/work/qemu-test-arm_prolog.sh

This says to take the 2 ovfiles mentioned: nologger.dist and
qemu-arm.board, and process them using the indicated classdir,
testplan and specdir, to product the output qemu-test-arm_prolog.sh.

The result will be a single file containing all the functions and
variables defined in the combined files, taking into account any
overrides encountered.

The classdir defines where base fuegoclass files are located, which
can be included or inherited into the environment space.

The testplan and specdir are used to augment the environment space
with variables for the indicated testplan.

Inheritance, inclusion and overrides

The system implements a weak form of object-oriented behavior
(specifically function and variable polymorphism), by allowing
functions and variables from the base Fuego system to be overridden
during execution of the program.

A class file has the same syntax as a shell script, but the
extension .fuegoclass. To include the material from a class file
into another file, you use either the ‘inherit’ keyword or the
‘include’ keyword.

If you ‘inherit’ a class file, then the variables and functions in the
file may be overridden by local definitions in your shell script.

The functions which are intended to be overridable start with the
prefix ov_ (usually), and reside in the ‘class’ files in the classdir.
Variables can also be overridden. These have no special identifying
prefix.

If you ‘include’ a class file, then the variables and functions in
that file may NOT be overridden by local definitions in your shell
script.

It is presumed that these overrides will be specified in the .board
and .dist files.

nologread.dist

One example of an override is provided in the system already, in the
form of nologread.dist. Every target node defined in the system (in
the Jenkins interface) defines both a board file and a dist file.
These are intended to define parameters and functions for accessing
the board, and for executing certain functions based on the type of
distribution on the board (e.g. poky vs debian).

The base.dist file is the default .dist file used by targets, and it
does not override any functions or variables provided by the fuego
system. It merely inherits all pre-defined functions from
base-distrib.fuegoclass.

However, the nologger.dist file is intended for use when there is no
command ‘logread’ provided on the target. It uses ‘cat’ instead to
retrieve the log information during the test. It inherits the
pre-defined functions from base-distrib.fuegoclass, but then overrides
the function ov_rootfs_logread.

Here is a list of overridable functions:

From base-board.fuegoclass:

	ov_transport_get

	ov_transport_put

	ov_transport_cmd

From base-distrib.fuegoclass:

	ov_get_firmware

	ov_rootfs_reboot

	ov_rootfs_state

	ov_logger

	ov_rootfs_sync

	ov_rootfs_drop_caches

	ov_rootfs_oom

	ov_rootfs_kill

	ov_rootfs_logread

From base-funcs.fuegoclass:

	default_target_route_setup

The following variables can be overriden:

From base-params.fuegoclass:

	DEVICE

	PATH

	SSH

	SCP

How to use the override/class system

Board and distribution files are referenced in the Jenkins definition
for a test node (target). These files are interpreted by Fuego as
overlay files, which can use values and functions from other files
(fuegoclass files), and override them if necessary for a particular
board.

Inheriting and including other variables

An overlay file (board or distribution file) defined variables and
functions from other base class files in the system using the
‘inherit’ and ‘include’ directives.

The inherit directive is used to read items from a fuegoclass file
that can be overridden.

Items that are read from a fuegoclass file using the ‘include’
directive cannot be overridden in the overlay file.

For example, a board file usually uses the following directives:

	Inherit “base-board”

	Include “base-params”

This means that the functions and variables declared in the
base-board.fuegoclass file can be overridden in the board file.
However, the functions and variables declared in the
base-params.fuegoclass file can not be overridden in the board file.

Syntax for overriding variables and functions

To override a variable that is defined in another file, you re-declare
the variable in the board or distrib file using the normal syntax
(NAME=”value”), but put an “override” prefix on the line, like so:

override NAME="value"

To override a function, use the syntax as follows:

override-func func_name() {
 function commands...
}

The syntax must be precise, including the number of spaces in the
first line and the brace placement (on same line as function name for
the opening brace, and at the first of the line for the closing brace)

System Developer Notes

Outline of ovgen operation

Here is an outline of ovgen operation:

	run

	Parse command line arguments

	Parse test specs, if specdir is specified on command line

	Parse test plans, if testplan is specified on command line

	Parse all the base fuegoclass files (from classdir directory)

	Parse classes out of the override file

	This processes inherited values and overrides during the parse

	Generate the prolog (test variable script) from the data read

Note

testplans and testspecs are simple maps internally (in ovgen.py).
However, parseBaseDir() and parseOverrideFile() return class objects
that are put into a list.

For additional developer notes on the overlay system, see
ovgen feature notes

Target Packages

A “target package” is a binary archive file that contains the
materials that are needed on a board to execute a test. It is in
‘tar’ format, and contains the materials that would normally be
deployed to the board during the deploy phase of test execution.

Building a target package

To build a target package, use ftc run-test and specify a subset of
phases to run that includes the makepkg phase. Specifically, you should
specify to run the pretest, build, deploy and makepkg phases.

Example:

ftc run-test -b beaglebone -t Functional.hello_world -p "pbdm"

The package will be created and placed in the directory /fuego-rw/cache/
with the name: $TOOLCHAIN-$TESTNAME-board-package.tar.gz

Making a full cache of target packages

To make all of the target packages for a particular board, use the
script make_cache.sh.

This script is located at fuego-core/engine/scripts/make_cache.sh. To
use it, provide a board name as a command line argument.

It will call ftc to create all of the target package files that it
can (ie that build successfully).

Developer notes

To support this features, a new test execution phase was added to
Fuego. The new phase is called ‘makepkg’, and the letter ‘m’ is used
in the phase string used with the ‘-p’ option to ftc run-test. By
default, the makepkg phase is not executed (that is, during a
“normal” run of a test). This phase must be specifically requested in
order for Fuego to execute it during a test run.

If the makepkg phase is specified, then deploy is altered to put the
materials into the directory /fuego-rw/stage/fuego.<testname>.
Then, after deployment the internal function makepkg is called to
create the target package file. The file is called
/fuego-rw/cache/$TOOLCHAIN-$TESTNAME-board-package.tar.gz.

Outstanding work

This system captures the materials that would be in
$BOARD_TESTDIR/fuego.$TESTNAME after the deploy phase. If a
test’s test_deploy function manipulates items on the target board
that are outside this directory, those changes will not be captured in
the target package.

For that, we will need to add 2 things:

	ability to specify multiple target locations for files

	pre-install and post-install scripts, just like Debian and RedHat packages

Note that by default, the packages are relocatable since they omit the
absolute path in the files contained in them. They should all be
relative to the $BOARD_TESTDIR/fuego.$TESTNAME directory.

Updating Fuego

Here are some notes about updating Fuego, and some tips for when it
might be necessary and when not.

Introduction

Fuego consists of two repositories - fuego and fuego-core. The
contents of the fuego repository are primarily focused on the
creation and management of the docker container, and the fuego Linux
distribution inside it, and on global configuration for the Fuego
system (including fuego configuration, board definitions and
toolchains).

The fuego-core repository has the core engine of Fuego, including
the ‘ftc’ command, the core scripts, and the Fuego tests themselves
(including source code in many cases). This repository tends to get
updated more frequently as tests are added or as the core framework of
Fuego is fixed, extended and enhanced.

One of the goals of having separate repositories (which are a bit of a
pain to keep synchronized) is to make it possible to update the test
framework and tests in fuego-core without having to update the
fuego repository or rebuild the docker container.

Upgrading Fuego

‘pull’ing fuego-core

In many cases, you can upgrade the Fuego test framework merely by
doing a git pull on the fuego-core repository, on your host
machine. This will pull new features and new tests into your
fuego-core repository. The new scripts, tools and tests in this
repository will become visible inside your container under the
directory: /fuego-core.

You can even do this while the docker container is running. However,
you should not do a git pull on fuego-core while a test is
running. That might change the scripts and tools in the middle of a
test, which would lead to unpredictable behavior.

If you have local modifications to existing tests, you may need to git
stash those modifications, and merge them with the new code, in order
to proceed with the update. New tests that you have created should be
in their own directories, and should not be affected by a git pull.

For Fuego releases, we strive to preserve backwards compatibility with
core APIs, so that existing tests will not break when a new core
framework is installed. However, in some rare cases this is
unavoidable. These situations will be noted in the release notes for
a particular release. See Releases for links to information about
each release. In particular, a large amount of framework refactoring
occurred in the 1.1 and 1.2 releases.

In rare cases, which will be announced on the Fuego mailing list and
noted in the release notes, a change will be made in the framework
that is incompatible with the current format of nodes, jobs or builds,
as held by the Jenkins server. In this case it becomes impossible to
use pre-existing test data with the new framework, and it may become
necessary to shelve that data and start a new instance (either of the
docker container or of Jenkins).

‘pull’ing fuego

As new features are added to Fuego, sometimes it becomes necessary to
alter the way the docker container is built, or to add additional Debian
packages to the ‘fuego’ distribtion of Linux that is inside the
container. These types of changes sometimes require that a new
container be built with the new attributes. However, if you create a
new container, it will not have the Jenkins data (nodes, job, and build
data) that is in your current Fuego container. For this reason, it is
desirable to avoid rebuilding the container, if possible.

In many cases it is possible to pull a new fuego repository and NOT
have to rebuild the container, by just implementing manually whatever
was changed. For example, the most common change to the fuego
repository is in the Dockerfile, to add a new package to the Fuego
distribution of Linux inside the container. While you could rebuild the
container from scratch after such a change, you can also manually just
do an ‘apt-get install <new-package>’ inside the running docker
container. This will provide the same functionality for your existing
docker container that a new one would have (e.g. providing that new
library, tool or feature).

In some cases, it is possible to implement other changes as well. For
example, if a tool is placed in a new location by an updated
Dockerfile, then you could manually move the tool in your docker
container, for the same effect. The details of this operation depend
on what has changed. You can do a ‘git log’ in the ‘fuego’ repository
for details about the changes made, and decide if you can effect those
changes in your existing container, without having to rebuild a new
one. If you have any questions, please ask them on the Fuego mailing
list, and we will try to assist.

Preserving old containers

Please note that you do not have to destroy or remove a container when
you create a new one. By convention the Fuego docker image is called
fuego and the Fuego docker container is called fuego-container.
You can specify different names when you create a new image and
container, but the preferred method of dealing with this is to rename
the existing image and container, and create new ones with the default
names. If you plan to preserve an image and container, you need to
preserve the fuego and fuego-core repositories in their same
directories, or docker will get confused. That is, if you want to
upgrade and create a new docker container, while still preserving the
old container, you should ‘git clone’ the repositories to a new
directory location in your host filesystem. Note in this case, that
you should not have both the new container and the old container
running at the same time, as there will be conflicts over TCP port
numbers and other host resources. The old test data (from the other
container) will not be visible along with any new data in the new
container (ie in the Jenkins interface). However this does provide a
mechanism to preserve your data from previous tests.

Note that Fuego ‘run’ data is outside of the Jenkins directory, and
stored on the host filesystem in fuego-rw/logs, so this data is always
available even when the docker container is rebuilt. You should be
careful, however, as Jenkins job IDs will be reused, starting from 1,
for any new jobs executed with a fresh container and instance of
Jenkins. These may overwrite the result directories from previous
runs, if you re-use the same fuego/fuego-rw directory. This is yet
another reason to use new repository directories for a new docker
container build (and Fuego instance).

There is also a tool called ‘deorphan-runs.py`, which can be used
to populate a Jenkins instance in a Fuego docker container with
jobs and build data, based on the run data in the /fuego-rw directory.
If you run this script after creating a new container, you should
be able to re-create most of the Jenkins data in your new container.
The script is located in fuego-core/scripts

Here are the steps to use this script:

	make sure your old container is not running

	create your new docker container, using the same directory
as the old container. This means it will use the same fuego-rw
directory, containing existing Fuego run data

	populate Jenkins nodes in the new container by manually adding nodes
using the ftc add-nodes command.

	You may need to also add toolchains to the new container, for any
boards you add as Jenkins nodes.

	inside the new container, execute the following command line:

$ /fuego-core/scripts/deorphan-runs.py -j -b

Fuego versions

Please note that the issue of updating the Fuego docker container
applies more generally to major Fuego releases. For Fuego, a major
release is considered one where the second digit of the version number
is the same (the ‘1’ or ‘2’ in 1.1 and 1.2).

If an API-incompatible change occurs within a major release, this is
considered a regression and we will try to fix it.

 A chart_config.json file should be defined for each test. This file
controls what charts are drawn in the Jenkins interface for the test
it is associated with.

Schema

chart_config.json holds a single object, with attributes
describing values for the configuration of the charts for a test. The
following attributes are supported:

	chart_type - this indicates the type of chart to
present in the Jenkins interface for a test job

	It’s value must be one of:

	measure_plot

	testcase_table

	testset_summary_table

	measure_table

	match_board - if true, this indicates that a job page in Jenkins
should only display the results for boards that match the job.

	By default, Fuego displays the results for all boards on a job page
for a test. This is to allow users to compare results between boards.
However, it is often desirable to only show the data for a single
board (the one that the job actually refers to).

	possible values are:

	true

	false

	measures - this is a list of measures for which plots will be drawn

	Each measure is specified by it’s tguid, which must be
specified in full (see Fuego naming rules)

	If no measures are listed in the chart_config.json file,

all the measures produced by the test will be plotted.

The purpose of the “measures” field is to limit the charting to only a
few important, or characteristic, measures. Some Benchmark tests save
many results, and the user may want to focus on only a few measures
that they are specifically interested in.

Here is an example, from the test Benchmark.cyclictest:

{
 "chart_type": "measure_plot",
 "measures": ["default.latencies.max_latency",
 "default.latencies.avg_latency"]
}

Defaults

If a test has no chart_config.json, then default values are used, as
follows:

	For Benchmark tests, create a measure_plot for all measures found in
any run of that test.

	Each measure_plot has one measure, shown with values
for all boards that have had that test run.

	The value and reference value (threshold) for each measure are
plotted relative to each run of the test (by Jenkins build number).

	For Functional tests, create a testcase table for each board.

	Each testcase table has the result status for each result, and a
set of summary lines at the bottom of the table, for each run of
the test (by Jenkins build number)

	For Functional.LTP, create a testset_summary_table for each board

	Summary counts of pass/fail/error/skip status are shown for each
testset (collection of test cases) for each run.

Planned features

Additional features are planned for future releases of Fuego, including the
following:

	Additional chart_types:

	testset_summary_plots - a plot of summary data by test set

	Control over measure grouping:

	The ability to place multiple measures in the same plot

	Control over board grouping:

	The ability to only show a single board, or specific
groups of boards, in single plots

	Control over header data

	The ability to customize the meta-data placed in table headers

See also

	See Jenkins Visualization for more information about the charts
that are configured by this file.

fuego board function lib.sh

Description

fuego_board_function_lib.sh is library of shell functions for
performing certain board-side operations in a distribution-independent
way. This set of utility functions is provided so that commonly used
operations can be performed on a variety of distributions (both
desktop and embedded distributions of Linux) without having to write
special-case implementations.

The library is written purely in POSIX, so it can be used for
board-side testing on almost all Linux platforms.
The library is normally copied to the board during the test’s deploy
phase. It resides in the /fuego-core/scripts directory, which is
/fuego-core/scripts/fuego_board_function_lib.sh inside the
Docker container.

Deploying the library

To put the script on board being tested, copy it to the board during the
test’s ‘deploy’ phase (in the test_deploy function in the test’s
fuego_test.sh file), with a command like so:

put $FUEGO_CORE/scripts/fuego_board_function_lib.sh $BOARD_TESTDIR/fuego.$TESTDIR

Using the library

Once the script is on the board, you can use it in your test’s
board-side shell script by sourc’ing it into the script, and calling
its functions.

Assuming you have a shell script running in the
$BOARD_TESTDIR/fuego.$TESTDIR directory, you could have the following
lines inside your script:

. fuego_board_function_lib.sh
set_init_manager

This ‘sources’ the script (function library) into your current shell
environment, and then calls the set_init_manager function, which is
one of the functions in the library.

Functionality overview

fuego_board_function_lib.sh supports the following operations:

	Detecting the init manager (proc 1) running on the system

	Detecting the type of logger service running on the system

	Starting and stopping system services in a distribution-neutral
way

Function reference

	set_init_manager - sets ‘init_manager’ to either ‘systemd’ or
‘sysvinit’

	detect_logger_service - sets ‘logger_service’ to either ‘syslog-ng’
or ‘syslog’

	exec_service_on_target - is used to start or stop a named service
on the target board

run.json

Summary

The run.json file has data about a particular test run. It has
information about the test, including the results for the test.

The format of portions of this file was inspired by the KernelCI API.
See https://api.kernelci.org/schema-test-case.html

The results are included in an array of test_set objects, which can
contain arrays of test_case objects, which themselves may contain
measurement objects.

Field details

	duration - the amount of time, in milliseconds, that the test
took to execute

	If the test included a build, this time is included in this number

	metadata - various fields that are specific to Fuego

	attachments - a list of the files that are available for this
test - usually logs and such

	batch_id - a string indicating the batch of tests this test was run
in (if applicable)

	board - the board the test was executed on

	build_number - the Jenkins build number

	compiled_on - indicates the location where the test was compiled

	fuego_core_version - version of the fuego core system

	fuego_version - version of the fuego container system

	host_name - the host. If not configured, it may be ‘local_host’

	job_name - the Jenkins job name for this test run

	keep_log - indicates whether the log is kept (???)

	kernel_version - the version of the kernel running on the board

	reboot - indicates whether a reboot was requested for this test run

	rebuild - indicates whether it was requested to rebuild the source
for this run

	start_time - time when this test run was started (in seconds since
Jan 1, 1970)

	target_postcleanup - indicates whether cleanup of test materials on the
board was requested for after test execution

	target_precleanup - indicates whether cleanup of test materials on the
board was requested for before test execution

	test_plan - test plan being executed for this test run. May be ‘None’
if test was not executed in the context of a larger plan

	test_spec - test spec used for this run

	testsuite_version - version of the source program used for this run

	FIXTHIS - testsuite_version is not calculated properly yet

	timestamp - time when this test run was started (in ISO 8601 format)

	toolchain - the toolchains (or PLATFORM) used to build the test program

	workspace - a directory on the host where test materials were extracted
and built, for this test.

	This is the parent directory used, and not the specific directory used for
this test.

	name - the name of the test

	status - the test result as a string. This can be one of:

	PASS

	FAIL

	ERROR

	SKIP

	test_sets - list of test_set objects, containing test results

	test_cases - list of test_case objects, containing test results

	Each test_case object has:

	name - the test case name

	status - the result for that test case

	measurements - list of measurement objects, containing test results

	For each measurement, the following attributes may be present:

	name - the measure name

	status - the pass/fail result for that test case

	measure - the numeric result for that test case

Examples

Here are some sample run.json files, from Fuego 1.2

Functional test results

This was generated using

ftc run-test -b docker -t Functional.hello_world

This example only has a single test_case.

{
 "duration_ms": 1245,
 "metadata": {
 "attachments": [
 {
 "name": "devlog",
 "path": "devlog.txt"
 },
 {
 "name": "devlog",
 "path": "devlog.txt"
 },
 {
 "name": "syslog.before",
 "path": "syslog.before.txt"
 },
 {
 "name": "syslog.after",
 "path": "syslog.after.txt"
 },
 {
 "name": "testlog",
 "path": "testlog.txt"
 },
 {
 "name": "consolelog",
 "path": "consolelog.txt"
 },
 {
 "name": "test_spec",
 "path": "spec.json"
 }
],
 "board": "docker",
 "build_number": "3",
 "compiled_on": "docker",
 "fuego_core_version": "v1.1-805adb0",
 "fuego_version": "v1.1-5ad677b",
 "host_name": "fake_host",
 "job_name": "docker.default.Functional.hello_world",
 "keep_log": true,
 "kernel_version": "3.19.0-47-generic",
 "reboot": "false",
 "rebuild": "false",
 "start_time": "1509662455755",
 "target_postcleanup": true,
 "target_precleanup": "true",
 "test_plan": "None",
 "test_spec": "default",
 "testsuite_version": "v1.1-805adb0",
 "timestamp": "2017-11-02T22:40:55+0000",
 "toolchain": "x86_64",
 "workspace": "/fuego-rw/buildzone"
 },
 "name": "Functional.hello_world",
 "schema_version": "1.0",
 "status": "PASS",
 "test_sets": [
 {
 "name": "default",
 "status": "PASS",
 "test_cases": [
 {
 "name": "hello_world",
 "status": "PASS"
 }
]
 }
]
}

Benchmark results

Here is the run.json file for a run of the test Benchmark.netperf
on the board ‘ren1’ (which is a Renesas board in my lab).

{
 "duration_ms": 33915,
 "metadata": {
 "attachments": [
 {
 "name": "devlog",
 "path": "devlog.txt"
 },
 {
 "name": "devlog",
 "path": "devlog.txt"
 },
 {
 "name": "syslog.before",
 "path": "syslog.before.txt"
 },
 {
 "name": "syslog.after",
 "path": "syslog.after.txt"
 },
 {
 "name": "testlog",
 "path": "testlog.txt"
 },
 {
 "name": "consolelog",
 "path": "consolelog.txt"
 },
 {
 "name": "test_spec",
 "path": "spec.json"
 }
],
 "board": "ren1",
 "build_number": "3",
 "compiled_on": "docker",
 "fuego_core_version": "v1.2.0",
 "fuego_version": "v1.2.0",
 "host_name": "local_host",
 "job_name": "ren1.default.Benchmark.netperf",
 "keep_log": true,
 "kernel_version": "4.9.0-yocto-standard",
 "reboot": "false",
 "rebuild": "false",
 "start_time": "1509669904085",
 "target_postcleanup": true,
 "target_precleanup": "true",
 "test_plan": "None",
 "test_spec": "default",
 "testsuite_version": "v1.1-805adb0",
 "timestamp": "2017-11-03T00:45:04+0000",
 "toolchain": "poky-aarch64",
 "workspace": "/fuego-rw/buildzone"
 },
 "name": "Benchmark.netperf",
 "schema_version": "1.0",
 "status": "PASS",
 "test_sets": [
 {
 "name": "default",
 "status": "PASS",
 "test_cases": [
 {
 "measurements": [
 {
 "measure": 928.51,
 "name": "net",
 "status": "PASS"
 },
 {
 "measure": 59.43,
 "name": "cpu",
 "status": "PASS"
 }
],
 "name": "MIGRATED_TCP_STREAM",
 "status": "PASS"
 },
 {
 "measurements": [
 {
 "measure": 934.1,
 "name": "net",
 "status": "PASS"
 },
 {
 "measure": 56.61,
 "name": "cpu",
 "status": "PASS"
 }
],
 "name": "MIGRATED_TCP_MAERTS",
 "status": "PASS"
 }
]
 }
]
}

Ideas

Some changes to the fields might be useful:

	We don’t have anything that records the ‘cause’, from Jenkins

	This is supposed to indicate what triggered the test

	The Jenkins strings are somewhat indecipherable:

	Here is a Jenkins cause: <hudson.model.Cause_-UserIdCause/><int>1</int>

	It might be worthwhile to add some fields from the board or target:

	Architecture

	Transport - not sure about this one

	Distrib

	File system

	If we add monitors or side-processes (stressors), it would be good to add
information about those as well

Use of flat data

Parsing the tree-structured data has turned out to be a real pain, and
it might be better to do most of the work in a flat format. The
charting code uses a mixture of both structured (nested objects) and
flat testcase names, and I think there’s a lot of duplicate code lying
around that handles the conversion back and forth, that could probably
be coalesced into a single set of library routines.

spec.json

Introduction

The file spec.json is defined for each test. This file allows for
the same test to be used in multiple different ways. This is often
referred to as a parameterized test.

The spec.json file indicates a list of “specs” for the test, and
for each test the values for test variables (parameters) that the test
will use to configure its behavior.

The variables declared in a spec are made available as shell variables
to the test at test runtime. To avoid naming collisions, the test
variables are prefixed with the name of the test. They are also
converted to all upper-case.

So, for example, for a test called Functional.mytest, if the spec
declared a variable called ‘loops’, with a value of “10”, the
following shell environment variable would be defined during
the test: FUNCTIONAL_MYTEST_LOOPS=10

The intent is allow for a test author or some other party to declare
sets of parameters to run the test in different configurations. A
different test configuration is sometimes called a “test variant”.

Fuego tests often wrap existing test programs and benchmarks,
which have command line options for controlling various test execution
parameters. Setting these command line options is one of the primary
purposes of specs, and the spec.json file.

Schema

spec.json holds a single object, with a ‘testName’ attribute, and an
attribute called ‘specs’ that is a collection of spec definitions.
Each spec definition has a name and a collection of named attributes.

	testName - this indicates the test that these specs apply to

	specs - this indicates the collection of specs

	fail_case - this allows a test to provide a list failure expressions
that will be be checked for in the test or system logs

	fail_regexp - a regular expression that indicates a failure.
This is grep’ed for in the testlog (unless use_syslog is set)

	fail_message - a message to output when the regular expression is
found

	use_syslog - a flag indicating to scan for the fail_regexp in the
system log rather than the test log

Within each spec, there should be a collection of name/value pairs.
Note that the values in a name/value pair are expanded in test context,
so that the value may reference other test variables (such as from
the board file, or the stored variables file for a board).

Special variables

There are some special variables that can be defined, that are recognized
by the Fuego core system.

One of these is:

	PER_JOB_BUILD - if this variable is defined, then Fuego will create
a separate build area for each job that this test is included in, even if
a board or another job uses the same toolchain. This is used during the
the ‘’build’’ phase of test execution. If the variables defined in a
spec are using during the build phase, and affect the binary that is
compiled during this phase, then this special variable should be used
and set to ‘true’.

Examples

Here is an example, from the test Functional.bc:

{
 "testName": "Functional.bc",
 "fail_case": [
 {
 "fail_regexp": "syntax error",
 "fail_message": "Text expression has a syntax error"
 },
 {
 "fail_regexp": "Bug",
 "fail_message": "Bug or Oops detected in system log",
 "use_syslog": "1"
 }
],
 "specs": {
 "default": {
 "EXPR":"3+3",
 "RESULT":"6"
 },
 "bc-mult": {
 "EXPR":"2*2",
 "RESULT": "4"
 },
 "bc-add": {
 "EXPR":"3+3",
 "RESULT":"6"
 },
 "bc-by2": {
 "PER_JOB_BUILD": "true",
 "tarball": "by2.tar.gz",
 "EXPR":"3+3",
 "RESULT":"12"
 },
 "bc-fail": {
 "EXPR":"3 3",
 "RESULT":"6"
 },
 }
}

In this example, the EXPR variable is used as input to the program
bc and the RESULT gives the expected output from bc.

For instructional purposes, this particular spec.json file is
overly complex and this particular test is overly parameterized.

Here is an example, from the test Functional.synctest:

{
 "testName": "Functional.synctest",
 "specs": {
 "sata": {
 "MOUNT_BLOCKDEV":"$SATA_DEV",
 "MOUNT_POINT":"$SATA_MP",
 "LEN":"10",
 "LOOP":"10"
 },
 "mmc": {
 "MOUNT_BLOCKDEV":"$MMC_DEV",
 "MOUNT_POINT":"$MMC_MP",
 "LEN":"10",
 "LOOP":"10"
 },
 "usb": {
 "MOUNT_BLOCKDEV":"$USB_DEV",
 "MOUNT_POINT":"$USB_MP",
 "LEN":"10",
 "LOOP":"10"
 },
 "default": {
 "MOUNT_BLOCKDEV":"ROOT",
 "MOUNT_POINT":"$BOARD_TESTDIR/work",
 "LEN":"30",
 "LOOP":"10"
 }
 }
}

Note the use of variables references for MOUNT_BLOCKDEV and
MOUNT_POINT. These use values ($SATA_DEV, $MMC_DEV or $USB_DEV) that
should be defined in a board file for filesystem-related tests.

When a test defines variables, they should be documented in the test’s
test.yaml file.

Defaults

If a test has no spec.json file, then default set of values is used,
which is a single spec with the name “default”, and no values defined.

See also

	See Test Specs and Plans for more information about
Fuego’s test spec and testplan system.

test.yaml

The test.yaml file is used to hold meta-information about a test.
This is used by the Test package system for packaging a test and
providing information for viewing and searching for tests in a proposed
“test store”. The test.yaml file can also can be used by human
maintainers to preserve information (in a structured format) about a
test, that is not included in the other test materials.

As an overview, the test.yaml file indicates where the source for
the test comes from, its license, the name of the test maintainer, a
description of the test and tags for categorizing the test, and a formal
list of parameters that are used by the test (what they mean and how to
use them).

test.yaml fields

Here are the fields supported in a test.yaml file:

fuego_package_version

Indicates the version of package
(in case of changes to the package schema). For now, this is always 1.

name

Has the full Fuego name of the test. Ex: Benchmark.iperf

description

Has an English description of the test

license

Has an SPDX identifier for the test. This is the main
license of the test project that the Fuego test uses, if the project
has a tarfile or git repo. Otherwise it reflects the license of any
non-Fuego-specific materials in the test directory. In such case,
the test directory should include a LICENSE file. Fuego materials
(fuego_test.sh, spec.json, chart_config.json, etc.) are
considered to be under the default Fuego license (which is BSD-3-Clause)
unless otherwise specifically indicated in these files. The license
identifier for this field should be obtained from
https://spdx.org/licenses/

author

The author or authors of the base test

maintainer

The maintainer of the Fuego materials for this test

version

The version of the base test

fuego_release

The version of Fuego materials for this test. This is a monotonically
incrementing integer, starting at 1 for each new version of the base test.

type

Either Benchmark or Functional

tags

A list of tags used to categorize this test. This is intended to be
used in an eventual online test store.

tarball_src

A URL where the tarball was originally obtained from

gitrepo

A git URL where the source may be obtained from

host_dependencies

A list of Debian package names that must be installed in the docker
container in order for this test to work properly. This field is
optional, and indicates packages needed that are beyond those included in
the standard Fuego host distribution in the Fuego docker container.

params

A list of parameters that may be used with this test, including their
descriptions, whether they are optional or required, and an example
value for each one

data_files

A list of the files that are included in this test. This is used as the
manifest for packaging the test (fuego_test.sh, and test.yaml are
implicitly included in the packaging manifest).

More on params

The params field in the test.yaml file is a list of dictionaries
with one item per test variable used by the test.

The name of the parameter is the short name of the parameter, without
the test name prefix (e.g. FUNCTIONAL_LTP). The parameter name is the
key for the dictionary with that parameters attributes.

Each parameter has a dictionary with attributes describing it. The
dictionary has the following fields (keys):

	description - text description of the parameter

	example - an example of the parameter

	optional - indicates whether the test requires this parameter
(test variable) to be set or not. The value of the ‘optional’
field must be one of ‘yes’ or ‘no’.

The test variables may be described by the test.yaml file can be
defined in one of multiple locations in the Fuego test system. Most
commonly the test variables are defined in a spec for the test, but
they can also be defined in the board file, or as a dynamic board
variable.

Example

Here is an example test.yaml file, for the package Benchmark.iperf3:

fuego_package_version: 1
name: Benchmark.iperf3
description: |
 iPerf3 is a tool for active measurements of the maximum achievable
 bandwidth on IP networks.
license: BSD-3-Clause.
author: |
 Jon Dugan, Seth Elliott, Bruce A. Mah, Jeff Poskanzer, Kaustubh Prabhu,
 Mark Ashley, Aaron Brown, Aeneas Jaißle, Susant Sahani, Bruce Simpson,
 Brian Tierney.
maintainer: Daniel Sangorrin <daniel.sangorrin@toshiba.co.jp>
version: 3.1.3
fuego_release: 1
type: Benchmark
tags: ['network', 'performance']
tarball_src: https://iperf.fr/download/source/iperf-3.1.3-source.tar.gz
gitrepo: https://github.com/esnet/iperf.git
params:
 - server_ip:
 description: |
 IP address of the server machine. If not provided, then SRV_IP
 must be provided on the board file. Otherwise the test will fail.
 if the server ip is assigned to the host, the test automatically
 starts the iperf3 server daemon. Otherwise, the tester _must_ make
 sure that iperf3 -V -s -D is already running on the server machine.
 example: 192.168.1.45
 optional: yes
 - client_params:
 description: extra parameters for the client
 example: -p 5223 -u -b 10G
 optional: yes
data_files:
 - chart_config.json
 - fuego_test.sh
 - parser.py
 - spec.json
 - criteria.json
 - iperf-3.1.3-source.tar.gz
 - reference.json
 - test.yaml

Note that the params section of this test.yaml file shows
information for two test parameters: one called “server_ip”, and one
called “client_params”.

 _static/file.png

_static/minus.png

_static/plus.png

_images/rpi-config-menu.png
HEEEEE

7/ Run

_images/rpi-network-address.png
al o %] 1601

_images/horizontal-fire-public-domain.jpg
AW

_images/raspberry-pi-configuration-interfaces-ssh-enable.png
) Raspberry Pi Configu i@raspberrypi: ~ 0% | 1538
[B | @ respbery Pi configu.. [Ellpieraspbemyp

- o x

I~
Performance | Localisation

System
Camera Enable @ Disable
s ® Enable Disable
VNC Enable @ Disable
sP Enable @ Disable

Enable Disable

Enable Disable

Disable
Disable

OK

nav.xhtml

 Table of Contents

 		
 Fuego Test System

 		
 About Fuego

 		
 Architecture

 		
 Major elements

 		
 Jenkins

 		
 Pre-packaged tests

 		
 Abstraction scripts

 		
 Container

 		
 Hardware configuration

 		
 Different objects in Fuego

 		
 Jenkins operations

 		
 Fuego operations

 		
 Test execution

 		
 Test variable file generation

 		
 Input

 		
 Fuego test phases

 		
 pre_test

 		
 build

 		
 deploy

 		
 run

 		
 post_test

 		
 processing

 		
 phase relation to base script functions

 		
 Other scripts and programs

 		
 Data Files

 		
 Roles

 		
 Install and First Test

 		
 Overview

 		
 Step details

 		
 Run a test

 		
 Manually start a test

 		
 Look at the results

 		
 Conclusions

 		
 What do do next?

 		
 Fuego Quickstart Guide

 		
 Overview

 		
 Install pre-requisite software

 		
 Download, build, start and access

 		
 Add your board to fuego

 		
 Create a test directory on your board

 		
 Create board file

 		
 Add boards to the Jenkins interface

 		
 Install a toolchain

 		
 Now select some tests

 		
 Run a test

 		
 Additional Notes

 		
 Other variables in the board file

 		
 the Jenkins interface

 		
 Troubleshooting

 		
 Installing Fuego

 		
 Overview

 		
 Install pre-requisite software

 		
 Overview of remaining steps

 		
 Install the Fuego repositories

 		
 Fuego repository

 		
 Fuego-core repository

 		
 Downloading the repository

 		
 Create the Fuego container

 		
 Fuego Linux distribution

 		
 Configuring for ‘privileged’ hardware access

 		
 Using an different container name

 		
 Start the Fuego container

 		
 Using a different container name

 		
 Access the Fuego Jenkins web interface

 		
 Access the Fuego docker command line

 		
 Remaining steps

 		
 Alternative installation configurations

 		
 With a different Jenkins TCP/IP port

 		
 Without Jenkins

 		
 Without a container

 		
 Adding a Board

 		
 Overview

 		
 1 - Set up communication to the target board

 		
 2 - Decide on user account for testing (creating one if needed)

 		
 3 - Create test directory on target

 		
 Create board file

 		
 Add node to Jenkins interface

 		
 Board-specific test variables

 		
 General Variables

 		
 File System test variables (SATA, USB, MMC)

 		
 LTP test variables

 		
 Adding a toolchain

 		
 Introduction

 		
 Obtain a toolchain

 		
 Installing a Debian cross-toolchain target

 		
 Building a Yocto Project SDK

 		
 Install the SDK in the docker container

 		
 Create a -tools.sh file for the toolchain

 		
 Reference the toolchain in a board file

 		
 Notes

 		
 Python execution

 		
 Adding test jobs to Jenkins

 		
 Selecting tests or plans

 		
 Adding individual tests

 		
 Configuring job options

 		
 Adding tests for more than one board

 		
 Adding jobs based on testplans

 		
 Adding views to Jenkins

 		
 Adding a board view

 		
 Customizing regular expressions

 		
 Add view by test name regular expression

 		
 Add specific jobs

 		
 Test variables

 		
 Introduction

 		
 Board file

 		
 Common board variables

 		
 Overlay system

 		
 Stored variables

 		
 Commands for interacting with stored variables

 		
 Example usage

 		
 Example Stored variables

 		
 Spec variables

 		
 Dynamic variables

 		
 Variable precedence

 		
 Jenkins User interface

 		
 Main dashboard

 		
 New Installation

 		
 With a single node (board) added

 		
 With beaglebone node and jobs

 		
 Dashboard with jobs in Build Queue

 		
 Node pages

 		
 Node status page

 		
 Job pages

 		
 Functional job status page

 		
 Benchmark job - starting a build

 		
 Benchmark job - before successful execution

 		
 Benchmark job - with plot of metrics

 		
 Build pages

 		
 Results from a job build

 		
 Test log results

 		
 View pages

 		
 Screen to add a new view

 		
 Screen to configure the view settings

 		
 Other Jenkins pages

 		
 Build History

 		
 Jenkins management

 		
 Adding or Customizing a Distribution

 		
 Introduction

 		
 Distribution overlay file

 		
 Existing distribution overlay files

 		
 Referencing the distribution in the board file

 		
 Testing Fuego/distribution interactions

 		
 Notes

 		
 NuttX distribution overlay

 		
 Hypothetical QNX distribution

 		
 Integration with ttc

 		
 Outline of supported functionality

 		
 Supported operations

 		
 Location of ttc.conf

 		
 Steps to use ttc with a target board

 		
 modify your copy_to_cmd

 		
 Working with remote boards

 		
 using a jump server

 		
 Using ttc transport remotely

 		
 Setting up ssh ProxyCommand in the Fuego docker container

 		
 Building Documentation

 		
 building the outdated PDF

 		
 building the RST docs

 		
 html

 		
 singlehtml

 		
 latexpdf

 		
 Fuego Developer Notes

 		
 Resources

 		
 Notes

 		
 specific questions to answer

 		
 How the tests work

 		
 NOTES about ovgen.py

 		
 Sample generated test script

 		
 Logs

 		
 created by Jenkins

 		
 created by ftc

 		
 created by the test script

 		
 Core scripts

 		
 How is benchmarking graphing done?

 		
 docker tips

 		
 License And Contribution Policy

 		
 License

 		
 Default license

 		
 Copyright statements

 		
 License tags

 		
 Contributor agreement

 		
 Submitting contributions

 		
 Creating patches

 		
 Alternative submission method

 		
 Core interfaces

 		
 From Jenkins to Fuego

 		
 Environment variables passed during a build

 		
 From Fuego to Fuego

 		
 Deprecated

 		
 Example Values

 		
 From Fuego to Jenkins

 		
 Jenkins python module

 		
 Jenkins-cli interface

 		
 Scripts to process Fuego data

 		
 Adding a new test

 		
 Overview of Steps

 		
 Decide on a test name

 		
 Create the directory for the test

 		
 Get the source for a test

 		
 tarball source

 		
 git source

 		
 script-based source

 		
 Test script

 		
 Sample test script

 		
 Description of base test functions

 		
 Test spec and plan

 		
 Test results parser

 		
 Pass criteria and reference info

 		
 Jenkins job definition file

 		
 Publishing the test

 		
 Technical Details

 		
 Directory structure

 		
 Files

 		
 Using Batch Tests

 		
 How to make a batch test

 		
 Testplan element

 		
 test_run function

 		
 Test output

 		
 Preparing the system for a batch job

 		
 Executing a batch test

 		
 Viewing batch test results

 		
 Jenkins batch test results tables

 		
 Generating a report

 		
 Miscelaneous notes

 		
 Timeouts

 		
 Parser module API

 		
 Parser API

 		
 Deprecated API

 		
 parse()

 		
 process_data

 		
 Developer notes

 		
 functions in common.py

 		
 call trees

 		
 miscellaneous notes

 		
 data format and tguid rules

 		
 FAQ

 		
 Languages and formats used

 		
 Q. Why does Fuego use shell scripting as the language for tests?

 		
 Fuego naming rules

 		
 Fuego test name

 		
 Test files

 		
 Test spec names

 		
 Board names

 		
 Jenkins element names

 		
 Node name

 		
 Job name

 		
 Run identifier

 		
 timestamp

 		
 test identifiers

 		
 measure id

 		
 Test variable names

 		
 Dependency check variables

 		
 Artwork

 		
 Logos

 		
 Banners

 		
 images

 		
 Photos

 		
 Diagrams

 		
 Presentation templates

 		
 Glossary

 		
 B

 		
 C

 		
 D

 		
 F

 		
 J

 		
 L

 		
 M

 		
 O

 		
 P

 		
 R

 		
 S

 		
 T

 		
 V

_images/Fire-tahoe-firepit-by-Tim.jpg

_images/Fuego-architecture.png
Architecture Diagram

Host machine:
Container build system

Target board

Volume

_images/Fire-image-from-wikipedia-Public-Domain-white-bg.png

_images/Tahoe-firepit-with-Fuego.png

_images/Youtube-Intro-to-Fuego-ELC-2016-square.png
CEWovkgroup,

Introduction to the
Fuego
Test System

€mbedded Lin
Conference

Q operiorsim

124/ 5257 (=]

_images/Fuego-charting-drawing.png
test program

parser.py

Fuego parsing
module

chart_config.json

prepare_chart_data.py

mod.js
(and flot libraries)

/ graphs
/ and
{ tables /

_images/HeadTitle_Fuego-Jamboree.png

_images/fire-strip-bg1.jpg

_images/fuego-1.1-jenkins-config-view-beaglebone.png
Jenkins » _beaglebone

& New ltem

& Feople

= Buid History

Edit View

© Dsite view

£ Manage Jenkins

Build Queue

No builds in the quee.

Build Executor Status

= master
1 1de
210

S beaglebone

1 1de

Name

Description

Fille buld queue
Filler build executors

Job Filters

Status Fiter

Recurse in subfolders
Jobs

beaglebone

View of beaglebone jobs

[Safe HTML] Preview

Al selected jobs

beagiebone.default Benchmark.cycictest
beaglebone default Benchmark dbench
beagiebone.default Benchmark Dhrystone.
beaglebone default Benchmark hackbench
beaglebone default Benchmark himeno
beaglebone default Benchmark Interbench
beaglebone default Benchmark inpack
beaglebone default Benchmark Imbench2
beagiebone.default Benchmark.netper!
beagiebone.default Benchmark OpenSSL
beaglebone default Benchmark reboot
beagiebone.default Benchmark signatest
beaglebone default Benchmark Whetstone
beaglebone default Functional be.
beagiebone default Functional crashme.
beagiebone defauit Functional hello_worid

@ Use a regular expression to include jobs into the view
Regular expresson f

Columns

_images/fuego-1.1-jenkins-console-log.png
£ beaglebone.default. x

C | ® localhost:8080/fuego/job/beaglebone default.Functional hello_world/s/console

Jenkin

Jenkins »_ beaglebone defaut Functionalhello_world

Back to Project

0, status @ Console Output

7= Changes
Started by upstream project "beaglebone. testplan_smoketest.batch* build number 2
{3 console Output originally caused by:
Started by user anonymous
Building remotely on beaglebone in workspace /fuego-rw/buildzone
[buildzone] § /bin/sh —xe /tnp/hudson1854422796647547463.5h
export Reboot=false

© Delete Build Reboot=false

View as plain text

7> EditBuild Information

Parameters
export Target_PreCleanyy
8 Previous Build Target_PreCleanup=true
export Target_PostCleanup=true
Target_PostCleanup=true
export TESTDIR=Functional.hello_world
TESTDIR=Functional .hello_world
export TESTHAME=hello_world
TESTHAME=hel lo_world
export TESTSPEC=default
TESTSPEC=default
tineout --signal=0 106m /bin/bash /fuego-core/engine/tests/Functional.hello_world/hello_world.sh
Using nosyslogd. dist overlay
doing fuego phase: pre_test #nbbbsss
As=arn-Linux-gnueabihf-as
LDFLAGS=--sysroot / -ln
AR=arn-Linux-gnueabihf-ar
CXXCPP=arm-Linux-gnueabihf-cpp
FUEGO_RW=/ fuego-rw
HOST=arn-Linux-gnueabihf
TERM=xtern
SHELL=/bin/bash
HUDSON_SERVER_COOKIE=F41155¢50dalf1cd

_images/fuego-1.1-jenkins-beaglebone-node.png
C | ® localhost:8080/fuego/computer/beaglebone/

@ Jenkin)

Jenkins » Nodes. [E—

BacktoList [T ——

0, status !-i Agent beaglebone
© Detete Agent

&, Configure.

Projects tied to beaglebone

[Build History (o &

Load Statistics beaglebone default Benchmark cyclictest

{3 script Console
[2] o0

B system inomaton

beasiebone defout Benchmark shench
beasiebone defaut Benchmark Dhystone
beagiebone defout Benchmark hackpench
© Disconnect

beagiebone default Benchmark himeno

Build Executor Status beagiebone default Benchmark Inferbench

1 e beaglebone default Benchmark inpack
beagiebone default Benchmark imbench?
beagiebone default Benchmark netper!
beagiebone default Benchmark OpenSSL
beagliebone default Benchmark reboot

beaglebone default Benchmark signaltest

beaglebone default Benchmark Whetstone

P00 O0O0O0O000066EC
ST E S
Do RDRDRDRDODD

_images/fuego-1.1-jenkins-build-history.png
Jenkins » Nodes.

4 BacktoList
0, staus

© Detete Agent
Configure
= Buld History

Load Statistics

B Script Console

[oo

System Information

© Discornect

Build Executor Status

1 1de

@ beagiebone,default Benchmark reboot #4
@ beagiebone default Functional netpert #3
@ beagiebone.defauit Benchmark reboot #3
@ beagiebone.defauit Benchmark dbench #4
@ beagiebone default Benchmark Interbench #3
@ beagiebone default Functonal2ib #2
@ beagiebone default Functonal synctest #3
@ beagiebone default Functonal jpeg #2
@ beagiebone default Functonal ipvGconnect #2
~ hennlehone detaut Fuliotional be #1

beaglebone default Benchmrk reboot #4

beagiebone default Functional nefperf #3

beagliebone default Benchmrk reboot #3

beagiebone default Benchmark dbench #4

beagiebone default Benchmark Inferbench £3

_images/fuego-1.1-jenkins-dashboard-beaglebone.png
Jenkins [E——

& New ltem

& People Welcome to Jenkins!

= Buid History

[#add description

Please create new jobs to get started.

25 Vanage derkins

Build Queue

No builds in the quee.

Build Executor Status

5 master
1 e
2 1de

B beagiebone

1 1de

Page generated: Apr 6, 2017 6:32:10 PM UTC RESTAPI Jenins ver. 232.1

_images/fuego-1.1-jenkins-dashboard-new.png
Jenkins [E——

& New ltem (add descrption

& People Welcome to Jenkins!

7= Build Histor
. Please create new jobs to et stariec

25 Vanage derkins

Build Queue

No builds in the quee.

Build Executor Status

1 1de
2 10

_images/fuego-1.1-jenkins-dashboard-batch-build-queue.png
Jenkins

& Newtem

& Feople

= suia History

% Manage Jerkins

Bulld Queue (22)

beaglebone default Functional zlib
beaglebone default Functional synctest
beaglebone default Functional jpeg
beaglebone default Functional ipvéconnect
beaglebone default Functional bc:
beaglebone default Benchmark netpert
beaglebone default Benchmark dbench
beaglebone default Benchmark Whetstone
beaglebone default Benchmark OpenSSL
beaglebone default Benchmark Interbench
beaglebone default Benchmark reboot
beaglebone default Functional netpert
beaglebone default Functional. OpenSSL
beaglebone default Benchmark hackbench
beaglebone default Benchmark Imbench2
beaglebone default Functional scrashme
beaglebone default Benchmark Dhrystone
beaglebone default Benchmark signaltest
beaglebone default Functional hello_word

L

[*F *N “N o °X *N °¥ °¥ ¥ °¥ ¥ Y °Y *
e R S XL EE L S S 5 I

.
Name |

beaglebone default Benchmaricyciictest
beaglebone default Benchmark dbench
beaglebone default Benchmark Diystone
beaglebone default Benchmark hackbench
beaglebone default Benchmark himeno
beaglebone default Benchmark nterbench
beaglebone default Benchmarinpack.
beaglebone default Benchmarkmbench2
beaglebone default Benchmark nefper
beaglebone default Benchmark OpenSSL
beaglebone default Benchmark.reboot
beaglebone default Benchmarksignaltest
beaglebone default Benchmark Whelstone
beaglebone default Functional be

beaglebone default Functional crashme

(ada description

_images/fuego-1.1-jenkins-dashboard-beaglebone-jobs.png
3 Dashboard [Jenkins] x

& C | O localhost:080/fuego/

Jenkin

Jenkins

& New ltem
& People
= Build History

25 Vanage derkins

Build Queue

No builds in the quee.

Build Executor Status

B master
1 1de
2 1de

% beaglebone

1 1de

2

POOOOOOOOOOOOOEOEOE

Name |

beagiebone default Benchmark cycictest

beaglebone default Benchmark dbench

beagiebone default Benchmark Dhrysione

beagiebone default Benchmark hackbench

beagiebone default Benchmark himeno

beaglebone default Benchmark Inferbench

beaglebone default Benchmark inpack

beagiebone default Benchmark Imbench?

beagiebone default Benchmark netper!

beagiebone default Benchmark OpenSSL

beagiebone default Benchmark reboot

beaglebone default Benchmark signaltest

beaglebone default Benchmark Whetstone

beaglebone default Functional b

beaglebone default Functional crashme

beagiebone default Functionalhello world

beaglebone default Functional pvéconnect

[#add description

CECRCECRCRCRCRCRCRVRCRCRCRCRCRCR)

_images/fuego-1.1-jenkins-Dhrystone-job.png
Jenkins » beaglebone » _ beaglebone.default Benchmark Dhrystone

4 Backto Dashboard
O, status

= Changes

@ Workspace

© suianow

© Dsiete Proct
24 contgure

. Build History

RSS for all £ RS for faiures

Project beaglebone.default.Benchmark.Dhrystone

1 e

—# Recent Changes
=

Upstream Projects
@ beagishone testolan smoletestbatch

Permalinks

[#add description

e —

Page generated: Apr 6, 2017 637:51 PMUTC RESTAPI Jenins ver. 232.1

_images/fuego-1.1-jenkins-add-view-beaglebone.png
3 New View [Jenkins] x

& C | ® localhost:8080/fuego/newview

Jenkin

Jenkins

& New ltem
& People
= Build History

25 Vanage derkins

Build Queue

No builds in the quee.

Build Executor Status

B master
1 1de
2 1de
% beaglebone

1 1de

Viewname peagiebone
© ListView
‘Shows items in a simple it format. You can choose which jobs are to be displayed in which view.

Page generated: Apr 6, 2017 6:34:17 PM UTC REST API

Jenking ver. 232.1

_images/fuego-1.1-jenkins-management.png
¢ C O localhost:s080/fuego/manage

Jenkin

Jenkins

& newten Manage Jenkins

& Feople
i, New version of Jenkins (2.46.1) is available for download (changelog).

= buid History e e
% Manage Jenkins Configure giobalsetings and paths.
Conigure Gioba) Securty

— ‘Secure Jenkins; define who is allowed (o accessiuse the system.

No builds in the queve. /% Global Tool Configuration
Configur tools, their locations and automatic installers
Reload Configuration from Disk
Discard all the loaded data in memory and reload everything from fle system. Useful when you modified config fles directly on disk
master Manage Plugins
1 1de Adg, remove, disable or enable plugins that can extend the functionaity of Jenkins.
2 lde ‘Svstem Information
Displays various environmental information to assist rouble-shooting.

1 1de Sustem Log
System log captures output from java. uti1. 0gging output rlated to Jenkins.

oad Statisics
Gheck your resource uiization and see if you need more computers for your bulds.

Jenking CLI
el ~coessimanage Jenkins from your shell, or from your script.

) Seript Console
7 cccutes arbitrary scriptfor administrationtrousle-shooting/diagnosics

R Vanace tiodes
IS Add, remove, conirol and monitor the various nodes that Jenkins runs jobs on.

(@) 2boutsenkins

% beaglebone

_images/fuego-flame-only.png

_images/fuego-1.1-jenkins-hello_world-build.png
Jenkins » _beaglebone

Back to Project
Status

= Changes

B console Output

= Edit Build Information

© Detete Buid

Parameters

4@ Previous Buid

beaglebone default Functional hello_worid

() Build #3 (Apr 6, 2017 6:52:36 PM)

log

2 Nocnanges
=

@ Stated by anonymous user

‘Started 24 sec ago
Took 5.9 sec on beaglebone

Page generated: Apr 6, 2017 653:00 PM UTC REST API

[edit description

Jenking ver. 232.1

_images/fuego-1.1-jenkins-hello_world-job.png
Jenkins » beaglebone » _ beaglebone.default Functional hello_worid

BeckioDastiord Project beaglebone.default.Functional.hello_world

status
[#add description

= changes

& workspace

© culanow [—

© Deete Froject
. 2 Recent Changes
2 comgure

& BuidHistory Upstream Projects

@ beaglebone tesiplan smoketestbatch
Apr6, 2017 6:51 PM. Permalinks

Last build (#1), 19 sec ago
Last stable build (#1), 18 sec ago

Last successful buld (#1). 19 sec age
Last completed build (#1). 19 sec ago

Page generated: Apr 6, 2017 6:51:47 PM UTC RESTAPI Jenins ver. 232.1

_images/fuego-test-phases.png
Host

Expanded script

<target>_prolog.sh

make dirs,

check status

pre_test

-

|

build a
deploy transfer test program
un execute test program
get tesfiog
processing analyze) | o
post_test cleanup, get syslogs

- analyze

Target

_images/fuego-logo.png
Fueqgo

_images/fuego-script-generation.png
Base script

-/-

Expanded script
\A
— <target>_prolog.sh

s

/

_images/fuego-1.1-jenkins-dhrystone-log.png
[localhost:8080/fueq x

& & C | @ localhost:8080/fuego/userContent /fuego.logs/Benchmark Dhrystone/beaglebone default.7.7/testlog.txt

Dhrystone Benchmark, Version 2.1 (Language: C)
Progran compiled without 'register’ attribute

Please give the number of runs through the benchmark:
Execution starts, 10009000 runs through Dhrystone
Execution ends

Final values of the variables used in the benchmark:

Int_Glob:

should be:
Bool_Glob:

should be:
Ch_1_6lob:

should be:
Ch_2_Glob:

5
5
1
1
A
A
B
B
7
7

Arr_2_Glob[8][7]: 10060010
should be: Number_Of Runs + 10
Ptr_Glob->
PEr_Conp: 151560
should be: (implementation-dependent)
Discr: L)
should be: ©
Enun_Comp:
should be: 2
Int_Comp: 7
should be: 17
str_Con DHRYSTONE PROGRAM, SOME STRING
should be: DHRYSTONE PROGRAM, SOME STRING
Next_Ptr_Glob->
Ptr_Conp: 151560
should be: (inplenentation-dependent), same as above
Discr:
should be: ©
Enun_Comp: 1
should be: 1
Int_Comp: 18
18
DHRYSTONE PROGRAM, SOME STRING
DHRYSTONE PROGRAM, SOME STRING

_images/fuego-1.1-jenkins-dhrystone-start-build.png
Jenkins »_ beaglebone default Benchmark Dhrystone.

4 Back to Dashboard

Project beaglebone.default.Benchmark.Dhrystone

O, status

_ [#add description
= Changes

& workspace
D suidNow -

© Detete Prject

. 2 Recent Changes
2% conngure

. BulldHistory Upstream Projects
@ beagiebone festplan smokelestbatch
Apr 5 PM Permalinks
Comr w2]

+ Last buid (#5). 46 sec ago
RSS for all £ RS for faiures

Page generated: Apr 6, 2017 6:55:09 PM UTC RESTAPI Jenins ver. 232.1

_images/fuego-1.1-jenkins-dhrystone-job-plot.png
= changes

[workspace

© suianow

© Dsiete Proct
2% contgure

* Bulld History

Aor6, 2017 655 PM

Project beaglebone.default.Benchmark.Dhrystone

71—

7 Recent Changes

Upstream Projects

@ beaglebone testplan_smoketest batch

Permalinks

Last build (#5). 1 min 16 sec ago
Last stable build (#5). 1 min 16 sec ago
Last successful buld (#5), 1 min 16 sec
ago
Last completed build (£5). 1 min 16 sec
ago

Dhrystone / Dhrystone

1000000
750000
500000

250000

0
1500000
1000000
0000
0

43600 ase2s 050

Legend:

beaglebone-default- & beaglebone-default-
Dhrystone.Dhrystone Dhrystone. Dhrystone.ref

@ Al devices: @ Al frmware:
@ beaglebone ©3.8.13-bones0

50075

Page generated: Apr 6, 2017 6:56:21 PM UTC REST API

(ada description

able Project

Jenking ver. 232.1

